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ABSTRACT

Convenient approximate methods are doveloped for the
oalculation of oritical sizes and multiplication rates of spherical,
active cores surrounded by infinite tampers. Special attention is
given to those problems arising from the fact that neutrons of
different voloo;fion have different pr&perties. The methods oonsist
essentially of approximating the neutron densitles at each velooity
by fundamental mode shapes-for eash velooity, Each one of these
shapes forms a source of neutrons of all velocities, and simple
considerations of the number and spatial distribution of abs;rptiona
from these sources determine the critical size at which equilibrium
between production and absorption is achieved. The accuracy obtained
is apparently sufficient for all practical purposes, Modifications
of the method for systems of shapes other spherical or having finite

tampers are disocussed.
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Introduction

The characteristic neutron problem is that of determining
the critical radius of an active, spherical, homogenenus core
surrounded ty a finite or infinite, homogeneous tamper. The cross
sections in general will be energy dependent aﬁd the neutrnn .
spectrum will not be monochrbmatic, both because of the spread of
the fission spectrum and because »f the existence of inelastic
scattering in cnre and tamper. In some cases the neutron energy
spectrum can be cnnsidered monochromatic, and the problem is then
easily s-oluble by various standard methnds. In other cases, two
effective neutron energies can be considered tn exist and the
resulting Boltzmann equation solved by the use of one of the
spherical harm~niz approximations. In principle, better approxima-
tions cnuld be obtained by using three or more effective neutron
~nergies, but the work then becomes prohibitively difficult.

Some method »~f calculation is clearly necessary which - will obviate
these dif“iculties and at the same time retain sufficient accuracy
to be useful,

The methnds descerited in this report were developed speci-
fically for the easy calculatinn of critical masses and multipli-
cation rates of hydride assemblies, but their application is of
much greater generality. It is believed that they will be found
to have great usefulness in the treatment of all neutron protlems
in which an active, spherical cnre, with or without hydrogen

content, is surrounded bty an infinite »r finite tamper which may

nr may nnt scatter neutro-ns inelastically.
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These methnds are not exact, but in all cases of interest thus
far investigated their accuracy has been found ample for all
rractical purposes. Finally, they are extremely sinmple for
computation and, once mastered, quite simple to use in thinking
about a wide variety of neutron problems in which the energy
spread »f the neutrons is an essential feature.

Ch., I. Properties onf Systems with Monnenergetic Neutrons.

Section 1 The Fundamental Integral Equation.

We shall find it very useful in our later work to keep
in mind certain irportant features »f the simple one-velocity
neutrnn problem. Let us consider an active cnre surrounded by
a tamper. There may be spherical symmetry tut this is not necessar:
e cnnsider the case »f isotrnpic scattering, since this is-simple
and usuvally all that is needed. The tamper is characterized by
a total crnss section and by an ahsorption c¢ross section. The
core is characterized hy a total cross section O~ , and by a
number f , which is the numter »f extra neutrons emitted pér
enllision. These extra neutrnons are emitted isntronpically at a
single energy.

Supnose a single neutron is emitted isotropically at the
print X in the core. %e define a gquantity f(C?C——>3?) dx
whéch is the probability that the neutron emitted at t;l makes
its first collision in the core, irrespective of intervening
c»ollisinns in the tarper, at X in the volume element d< .
The function K depends on the properties »f the tamper, the

radius of the core, and the total crnss section of the core.
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We imagine a neutron flux density present in the core and tamper,
time independent, and defined in the core as the function g&VC?j
We can write the density of collisions per unit time in the core

as oy (X) . Using the function K ’
we can also write an expression for this collision density as a sum
of c¢ollisions arising at the point B3 from neutrons
liberated at all other points of the core from collisions and then
proceeding to B3 to make first collisions. This obviously
gives an integral equation for P&

o~ QAT = [(1+£) oy (%) R K (ReR)dX

or

w(X) = (1+f2/1§’K(3‘<”——3?)¢(‘>Z’) (1.1)
The integration extends only over the core.

Certain general properties of this integral equation follow
easily. The kernel K is clearly symmetric. This results
from the fact that if one considers the totality of paths from
X to X s 1t is seen that the reverse of each path is just
as likely as the forward path, and the totality of backward paths
will then have the same total probability as the totality of

forward paths.,

Section 2 Character of the eigenfunctions and eigenwvalyes.

Only for a discrete sequence of values of f can solutions

be obtained. There will be a lowest £ s called £, , for
which the density is everywhere positive, In a system
with spherical symmetry_it will have the shape (approximately) gf

-~
———
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iy —— e
sin kr

e s, With kr equal to something between %;' and 777

at the surface of the core. The function /7  will look more

or less as follows:

)

Core | Tam per

[\
AN
N
l ~

\\

(o] iCorc Radius r

The extension of ¥ into the tamper is indicated by the
dotted curve. This extension of course has essentially the shape
e~ hr

r
determined by the total and absorption cross sections in the tamper.

s Where h is the characteristic decay constant

There will be the usual rapidlyvdecaying transition effects at the
core-tamper interface.

The density functions corresponding to higher values of {
( f, being associated with g5 ) will have one or more nodal
surface, the neutron density being positive in some regions and
negative in others. Negative neutron densities have physical
meaning only as deficiencies below some positive neutron density,
but physical reasoning can be used in interpreting the integral
equation if negative neutrons are thought of as actual particles
whose presence in a region can cancel the presence of an equal
number of positive neutrons, From this point of view, it is clear

that increasing the number of nodal surfaces in gﬁ? will increase
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the value of f required to maintain this ¥ . This is so
because leakage of neutrons of opposite sign into one another will
become more rapid as the density function oscillates more rapidly.
A larger net production of neutrons per c¢nllision will then be
required t» compensate these larger losses by leakage.

Section Interpretation of the eigenfunctions and
eigenvalues,

Another useful interpretation of the eigenvalue 1+1 exists.
The integral equation says that an isotropic source of neutrons
distributed spatially in the core as the function 95& has the
property that all the resulting first collisions are distributed
also as tfp . Further, it says that if (1+f,) o~gf
neutrons are relgased per unit time per unit volume, cr*yaa
first collisions result per unit time per unit volume. This is
equivalent to saying that a source density ;65 gives rise to
a density of first collisions 7%3; gﬁh s or stated more
simply, one neutron released in a distribution /4, gives

quﬁ{ first collisions, having also the spatial depen@ence of

7/
The eigenfunctions [7/4 s sSince K 1is symmetric,
have the useful property of being mutually orthogonal when
integrated over the core. We shall assume, and it is certainly
true for cases of physical interest, that the functions 9&5 form
a complete set so that any reasnnable function defined over the core

can be written as a convergent series of Y .

APPROVED FOR PUBLI C RELEASE
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Section 4 Relation to the Milne Equation.

Tt 1s of some interest to derive the relatiom between the
integral equatipn (1.1) and the more usual way of writing the
integral equation for the two medium problem. We let o~ ¥ be
the total cross section in the tamper and 9 be the fraction of
tamper collisions which result in absorption. We denote the
ordinary Milme kernel between two points X and X (core or
tamper) by ME"—X) . This kernel is of course symmetric
since it is jusé the neutron flux density at X arising from
a unit source at X’ . We write w(X) . and @ (X
for the neutron densities in the core and tampér respectively and

obtain:

) = (1+f)a~ d%’ M (X'—X) wr (X7)

ore

+(1 +5)0~"j[ M) $ )

B(X) =(1 +£) / AT ME—%) & (%)

core

+(1~ 9)0-'-% *M (X ——x) ¢("’)

(4.1)
It is clear that if solutions of the equations (4,1) are obtained

for two different values of f , these solutions will be

——
L -
——

(3
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orthogonal with respeect to integration over the core only. It is
further clear that the set of functions 5&? obtained from the
equations (4.1) by giving {+f its various allowed values will
be identical with the previously defined set of 9&& « This
procedure is definitely contrary to the usual one of increasing

{+f and 1-9 in proportion and thus obtaining solutions
orthogonal over both core and tamper. It will be seen that the
procedure we have adopted seems to be much better suited to our
purposes., Of course, the kernel K can be expressed in terms
of the kernel M . If we imagine the core functiom M to be
‘ known, we can use the second of the equations (4.1l) to solve in
principle for the tamper function ¢5 « We can then insert this
function ¢5 in the first of the two equations to obtain a single
integral equation for gﬁi e We can then identify the kernel of
this equation with K .

Section 5 Equivalent eigenvalue problems.

The relations of the one-velocity problem can be written in a

somewhat different nnotation which is convenient for certain purposes.
We can imagine that a part o, of the total cross section O
results in a process of absorption. We can then ask, how many
neutrons 24, must be liberated for each neutron absorbed in order
to maintain the critical condition (in the nth mode). For each
nuetron absorbed 27, are liberated and hence the net number of
neutrons liberated per absorption is h - { s and per eollision

o3 o3
is (I/n—f) —5.3 since a fraction - ol of all collisions

APPROVED FOR PUBLI| C RELEASE
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are absorption. But previously we have called fn the net number

of meutrons liberated per collision, so that the relation between
our two notations is
fn= (0 -1) %&. (5.1)

Another interpretation of & 1s that for each neutron
liberated in the distribution ¢ , the number é%{ are
reabsorbed (with the same distribution) by the cross section Ox o
This idea is made use of in the next section.

This question can also he looked at more formally. If a
kernel P (X—% is defined as the density of absorptions
at X produced by one neutron emitted at X , 1t is
easily seen that P can be written as a power series in the kernel

K (matrix multiplicatinn) and therefore the kernels K and P
both have the gﬁh. for their eigenfunctions, and the eigen-
values of P are simply related (by equation 5.1) to the eigen-

values of K .

Seci;ion 6. Absorption of neutrons from an arbitrary
source.

We are now in a position to answer a question of great interest
in our later work. Neutrons are emitted isotropically with a space
density ~S(§7 o We wish to determine the resulting density of
absorptions A(X) . Ve write S as a series in the Y

S5=F Snta (6.1)

- — T
a=
e e —— R
-"—-‘- —— m
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It is then clear from our previous work that each ¥ will

reproduce itself in the absorption density, but with a reduced

{

strength —_— . We have:
%

A =L, Snh (6.2)

The series for S 1is assumed convergent, and the 24, form
an incre;sing sequence, so that the series for A converges more
rapidly than that for S . Physically, the distribution of
absorptions is always smoother, that is closer to 5@5 s than
the source which gave rise to the absorptions,

The ideas which we have developed will be of great importance
for the methods to be presented, but we still need a way of getting
numerical values for the fn. or 2p , and useful shapes for
the ¥ . We shall find that only f, , 2, , and Yp are
needed, and these can now be obtained with some ease for the case
of spherical symmetry with an infinite tamper. Given the tamper
constants, the core radius and the total core cross-section, f,
and hence 2Zg can be obtained by the simple procedures given

in LA-173 or LA-234. The eigenfunction ¥, will always be

sin kx
%

medium wave number calculated from the f, . These approximations

approximated by where K is the infinite

will generally be good. Where they are not, care will be taken

to point out the reason and possible improvements,

o o r—————————— . PR
-
— Wm
. e e ——————
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II. The Treatment of Many-Velocity Problems When No Inelastic
§cgttering is Present in the Tamper.

In attempting to solve critical problems involving a

continuum of velocities, we shall begin by finding what problems
we can solve exactly. We restrict ourselves in this chapter to
problems in which the tamper absorbs and scatters elastically but
does not have any cross section for inelastic scattering, fission,
absorption, and elastic scattering. All processes are assumed
isotropic.

Section 1 Case of constant mean free path.

If, in addition to these requirements, we ask that all cross
sections in the tamper and the tntal crnss section in the core be
independent of neutron energy, we obtain a pqoblem exactly soluble
in terms of the presumably known solutions of the one-velocity
problem. To show this we first notice that, because of our
restrictions on the cross sections, a one-velocity eigenfunctiom

Yl and eigenvalue 1+£, calculated with the constants
at any velocity will be identical with those calculated at any
other velocity. This is so because the eigenfunctions and eigen-
values nf the nne-velocity prnoblem defined by equation (l.l) of
Chapter I depend only on the total cross sectinn in the core,
the radius of the core, and the properties of the tamper,

We now assert that with these restrictions, if the value of #
is such that the system is critical, neutrons of every velocity
will have the same spatial distribution ¢ . This canbe
seen by remembering the properties of the eigenfunctions. Neutrons

of all velocities will be making conllisions which also have the
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spatial dependence 5&5 « From each collision neutrons come
out isotropically with an energy distribmtion determined by the
cross sections. We then have an isotropic source of neutrons of
2ll veloncities spatially distributed as gﬂg o The last
step in the argument consists of the observation that the first
collisions from such a source will also have the shape »f EPB
OQur assertion is therefore self-consistent,

We can find the value of 27 = required for criticality in
the following way. Suppose that when a neutron of velocity v~/
makes a collision in the core, a number S(v/—=v)dv
are emitted isotropically in the velocity range dv « The
functinn S(V’—-—V) will involve the various core
cross sections, the spectra of fission neutrons and inelastically

scattered neutrons, and the number of neutrons, 2 , emitted

ver fission, Call oz (V) the cross seetion
for elastic scattering a (V) that for capture, oz(v)
that for fission from which Y /4 neutrons are liberated with
spectrum x(v) and o7 that for inelastic scattering.
If a neutron of velocity 74 i1s scattered inelastically,.
supnose t?ie spectrum resulting is ¢(V—»V’) o« In this case,
o~=0y+op+O7 + O
and
o (v)S(V'—v) = oz v) S (v'-v) +op (V)ex(v} +op VIB V) (1.1)
where J(V’-V) is Dirac's delta function and insures that

neutrons scattered elastically do not alter their velocity.

APPROVED FOR PUBLI C RELEASE
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Let N(v) be the total number of neutrons present in the core

per unit range of v , multiplied by Vv . \
The total number of collisions made at velocity V'’ in the

range dv’ per second is NE’) o (v)dv’ where o~(V’)

i{s the total core croiss sectiom. (actually o~ , at present,

18 considered as independent of VvV’ ). From each of these

eollisions, S(v/i—=v) . dv neutrons emerge in the

velocity range dv and a fractionm -1—}{:- of these make

first collisions in the core. We can therefore express by an

integral equation the fact that all collisions at velocity v

arise by the process just described from collisioms at all velocitiles

v/ . We have: |

N or(v)dv =/ dv/ SEEZR N@) o (o)

or

o
N(V)O‘(v)=-—1-+if——/ dv’ S(vtv) N(v) o~(v) (1.2)
° o

This equation will have a solutinn only for one value of 2 ,
(which is contained implicitly in the function S(vi—v)
and this value would then just keep the system critical. We could
just as well keep 2 fixed at its correct value and inquire what
the radius of the core must be to make 1+fo such as to permit
a solution of the equatiél.

The caleulation can also be made in a somewhat different but

equivalent way. This has the advantage of removing the delta

function in (11).
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Let us consider the elastic cross section as distinct from the.
rest of the cross section, which we will think of as an
absorption cross section og(v) . The processssincluded
in this absorption cross section are al 1 those which remove
neutrons from the velocity Vv so that oz=o7+or+ o7

We let 27(v) ©be the value of 27 required to keep & one=
velocity problem critical 1f oz (v) 1s considered as absorption,
as defined in section l~5. Suppose that when a neutron of
velocity v’ suffers an absorption, Sa (V’-»V)d‘v neutrons

come out 1soﬁrop1ca11y in the velocity range dv .

07 (v) Sa(v=v) = 07 (V) 2 2, (V) + o (V) & (v1—ev) (1.3)
We have for the total number of absorptions per second of

neutrons in the velocity range dv , N(v’)og(v')dv’ .

Each of these emits Sa(vi—=v)dv neutrons, a fraction

-’/—'(‘7)— of which are reabsorbed (by equation (5.1) of Chapter I).
We can again write an integral equation, expressing the fact that
all absorptions at veloclity Vv arise by the above process from

absorptions at all velocities. We have?

N{)oz &) dv =a/gov’—5‘—(&’—‘—’2°h’— N(v?) oz (V)

z(V)

or:

NV)oz (V)= ﬁ@ dv'Sa(v—~v) N(v) @5 (v)

—ams -—— oln .o

APPROVED FOR PUBLI C RELEASE
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1s.

The function 2/(v) depends on the radius of the core and the
function  S;(v>v)  contains the real 2z for fission. The
equation will not iﬁ general have a solution, but we can obtain
one by properly adjusting either 2 or the core radius, in
which case we shall have made the system critical.

The equations (1.2) and (1.4) are rigorously equivalent,
as can be proved immediately from (1.1) and (1.3) and the
relation of f and 2 given in (5.1), Chapter I. Equation
(1.4) is more convenient to use because of the lack of the delta
function in S, .

The solution of this equation l.4 is discussed in more detail
in section 4, but we can solve it here in a particularly simple
special case, namely when there is no inelastic scattering in the
core. (We shall also assume =0 but this is really not
necessary). In this case, since o3= op Equation 1.4

becomes:

NE)op (V) =—”,7"<\(7§;’L/dv'N(v')aT(v') (1.5)
4 ,

This equation can be solved by noting that

N@op(v) = c X{v). (1.6)

where C 1s a constant, independent of VvV , Now we substitute

'this solution in equation (1.5) and obtain:

o0
CVV =C z (v /dV ”(V) (1.7)
? ,

v
~o—
—
= ‘ -
— - e eeam—

———
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This obviously requires:

@
i _ x (V)
(o]

This equation has a simple interpretation. In a critical

system, the neutrons liberated fr-m a single fission must produce
exactly one fission in the first generation. Multiplying equation
(1.8) through by 2z , we have exactly this statement for the
simple. system considered. This 1s so because zv,t(vj is
the number of neutrons emitted in the velocity range dv  1in one
fission and there is no inelastic scattering. By our previous
arguments, a fraction ;%Qa~ of thnse neutrons emitted at
veloecity ©V  will be absorbed to produce fission. The total
number of fissions coming in one generation from the neutrons
released from one fission 1s then clearly equal to
‘4(/ﬁikr—%§§%%g— which must be equal to unity
as stated by equation (1.8).

Section 2 Variable cross section., The first lower
approximation.

The restriction to constant cross sections in the tamper and

constant total cross section in the core, which is necessary for

the validity of equations (1) and (2), is of course too stringent

to include most cases of interest. We shall, however, use the
arguments employed in the derivation of these equations to give

Aa useful approximate treatment of less restricted problems. Suppose
that the tamper cross sections and the core total cross sections
vary with neutron velocity in addition to the variations permitted
in the preceding treatment. We can no longer argue that we know

the spatial distribution of neutrons of each velocity.
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This is so because the eigenfunctions calculated with the constants
at different velocities are no longer the same, and the consistency
argument that all neutrons are distributed as the common 965 will
therefore fail, '

We proceed by defining a set of functions % (;,V) which
are the eigenfunctions calculated from the constants for neutrons
of velocity v . The set of functions for each velocity is
assumed complete, and in particular any one of the 5}5' at one
velocity can be expanded in a convergent series of the gﬁﬁ for
any other velocity. In any reasonable system, a given % will
not vary drastically with neutron velocity. This is especially
true of , the eigenfunction with no zeros. In a system

with spherical symmetry, for example, the function '900 will be
sin kr
2

function must be at least -%E and somewhat less than 4F , in

approximately of the form where the phase of the sine
all interesting cases, Usually conditions will be much less ex-
treme, so that we make the assumption that the change in shape
of 74 with velocity 4s small in a sense to be deflined

more carefully later,

It can now be seen that a reasonable approximation for the
spatial distribution of neutrons of velocity V is to say thaf
it has the shape of %(5(’,\/) . Suppose that this were
strictly true. DNeutrons of velocity v’ make collisions
distributed as ©Z (X,v) . From these collisions neutrons
of all velocities emerge isotropically. Consider those with

velocity Vv . We have an isotropic source of neutrons of
velocity V distributed as QJ?CQ;\PQ and must then

APPROVED FOR _PUBLI C RELEASE
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calculate the spatial distribution of absorptions from this source.
We use the method of Chapter I and expand the source density in
the eigenfunctions of velocity v '

S()= o 66 v) = £ & ¢ (Tov) (2.1)

The density of absorptions, (or first collisions, if any collision
is called absorption), will be:

A(§)={:;§%— w (X, v) | (2.2)

where the 24, (V) are those defined by equation (5.1) of Chapter I.
The shape of A (X) will be very close to that of gZ (X,V)
for two reasons., In the first place, most of the comtribution to
the expansion of S(X) comes from the term in ¢ (X, V) .
This is so because of our assumption that &% (X,V)
and Y (X, V') do not differ much in shape. In the
sécond place.,. f.hé séqﬁence of the I/n(v) increases hrépidly .'
as N increases, so that the series for A (X) converges much
nore rapidly than that for ‘SG?) o Some numerical illustrations
of the validity of these statements can be found in Appendix I.
It is clear then that our assumption of shape 5@5(?}»7

for the neutron distribution at velocity V is nearly self-
consistent but not completely so. It is exactly so when

S (X, V) is independent of Vv and, as we shall see, is

good enough for most purposes when 500 varies in a reasonable

way with v .

e ———
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#ith this assumption, we can write an equation analogous to
equation (1.4) which will however no longer be exact. With the
notation used in deriving equation (1.4), and the approximate

§§§umption that neutrons nf velocity v emitted from absorptions

at veloncity WV’ are emitted in the svatial distribution gﬁ, X v) :

we will have an equation of exactly the same form as equation (1.4):

©
A(v) =;/-1;>o/ dv’ 5, (v —=v) A (v’) | (2.3)

where we have set A (v)-= N(V)og(v) , . Thus A(v) has
*he significance of being the total number of neutrons being
atishrbed at velocity v .

This is o“ course nn longer an exact equation. . It is very
nearly correct and can be used for nearly all practical problems.
¥e shall call it the first lower aporoximation.

Section 3 First upper approximation.

Another equation can be derived by making an approximation

no worse than that used in nbtaining equation (2.3). ¥We_assume that

/

only those absorptions which occur at velocity A4 in the
distmibution géé(?;w“) are to be counted as producing
absorptions at velocity v . If %(;,V) is assumed to’

te normalized so that its integral over the core is unity, then we

must write:

¥, (xX,v’) = Z cn Yi (x,v)
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We are interested in C, , which is: _

AN 5 Gv) gP'CXG\f)dir
Co(V, V) -%% Z) df?

As befsre, N (V') o3 (v) S; (vi+v) dvidv neutrons

are emitted per second from absorptions at velocities in the range
dv to final velocities in the range dv’' ., With the approximation
we are now making, a fraction Co(vﬁ V) of these form
{
a source for absorptions at velocity v and a fraction Z6%)
of these actually are absorbed at velocity v . This reasoning

yields the integral equation:

| 0
N(v) o7 (v) =z7(-‘;jo/dv’5a(vf-»v) Co(vy, v) N(v) oz (V) (3.1)

The equation can be made simpler and more symmetrical if
N(v)o;(v) is replaced by v
=g (2, 4
so that, except for the new normalization, A (V) is the number
of neutrons ahsorbed in the shape Y% (x,v) . In this case

it becones,

o
A(v)= y’(w/dV’Sa (Vev) Mo (ViV) A(v) dv’ (3.2)
o

where

(F vt (5, v) X

52 (R, )R - V2 (R, V)X

Mg (VsVv’) =

(3.3
and the % functions used in calculating M need not be normalized

in any particular manner. The equation (3.2) we call the first upper

-~

S—— L TTT— -
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approximation,
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We have two equations (2.3) and (3.2) which represent different
approximations to the many velocity problem. We shall attempt
(the mathematical rigor is nst all that may be desired) in
Appendix II to show that the two approximations give results which
are on opposite sides of the truth. In the very large number of
different practical cases which have been tried the equation 2.3
gives a value of the 2zr needed fof criticality, or the critical
radius which is t-Ho low, and the equation 3.2 gives results ton
high. Therefore we ha;e a methnd by which we can bracket the correc
answer with confidence. This permits us, for example, to put an
upper limit on the error made by using 2.3 (which is the simpler to
snlve). It is only necessary tn investigate the change made on
using (3.2).

It is true that the twn equatinns (2.3) and (3.2) in all
practical cases tried have given remarkably close results. In
aprendix III and IV we give a few representative examples. The

values of & -1 calculated by the two methods rarely differed by

more than 47. Thus the use »f equation (2.3) alone can be
relied on for great accuracy. If any doubt of the accuracy exists, |
it may be tested by a comparison with (3.2).
The reason that the two equations give nearly the same results

is not far to seek. The equations differ only by the factor

D(o(\/,v”) in equation 3.2. If this factor were exactly 1
the twn equations would be identical, and, since they bracket the
correct answer, exact. , But D4o(\6\/0 can only be exactly 1

if Y7 (x,v) = Y7 (x4 v7) , that is if the shape

2f the fundamental made were the same at all velocities. This is

APPROVED FOR PUBLI C RELEASE
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the case when the total cross sections are velocity-independmnt
in which case (2.3) is indeed exact as we showed in section 1,
equation (1.4). When, however, ¥ (x,v) differs from tf5(x,v) ,
the Schwartz inequality shows that M, (v,v’) must be less
than one. However, except when the functions differ to an
extreme degree, the amount by which M falls short of unity is very
small. Some representative values are given in the accompanying
table. The value of M depends only on the shapes of the
functions &% (X, V) and ¥z (X,v’) . These functions
depend only on the radius r . If the functions are of shape

| -pr® and {-qr?® respectively, the value of M 1is

M= 4+ xPQ
1+ xPEJ/T+ xQ2
where .
X = 12 -0069 P = and Q ’"""%_
{175 ) ? { —'g:p 1-%q
o TABLE. ..
uk(X.v} o (x,v’) M
1 1-1/3r% . 994
1 1-1/2pr2 .983
1 l - r2 .836
l- ré l - pr? 1,000
1-1/2 r#? 1 - r2 .923
1-1/3 pr2 l - r® .891
1 sin Y/ o, .780

APPROVED FOR PUBLI C RELEASE
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If for some velocity the mean free path in the tamper 1s very
much less than that in the core ( a very rare case) P is small
and tfp 1s nearly 1 1f the tamper 1s not absorbing. If the
paths are more nearly equal, P 18 near 1/3 and increases
as the mean free path in the tan per increases. Absorption 1in
the tamper increases the neutron curvature P « & value of
p =as high as 1 can occur with a completely absorbing tamper
and-a core with very small mean free path. In this case ¥
is more like a sine wave, E!i%%?ll rather than |- r2
but in other cases the parabola 1s a good enough g proximation
for the computation of ™ . In practical cases P will
rarely be below 1/3 or as high as 1 so that M will always -
exceed 0.90. Furthermore, of course not only the extreme values
of M appear in (3.2). In the integration over V¥’ the latter
variable takes all values and when it is close to V', M, (v,V’)
must be very close to 1. Since therefore the P1° i1s close fto
unity over most of the range of integration the results of (3.2)
are nearly the same as the results of (2.3). In fact this may
be made use of. Equation (3.2) 1s most easily solved by pertur-
bation methods, consldering {—M, (V, V) as a perturba-
tion away from the much simpler equation (2.3). Thus a simple
formula for the difference of the results of (3.2) and (2.3) is
readily found, and appears in asppendix II, equatlion (II-9).

Section 4 Higher approximations

We now give for the sake of comple teness a formal scheme of
successively better approximetions to the correct value of 2 .
The first of these will be the approximation given by equation (2.3)

the second that given by equation (3.2), and further ones will




|

|
|

|
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increase in accuracy and difficulty. The first will be the most
convenient because nf its ease of application and the second will
have some usefulness for estimating accuracy, but higher approxima-
tions, while necessary for gnod accuracy in source multiplication
calculations, do not in general increase the accuracy sufficiently
to compensate their increased d&ifficulty.

We write an integral equation for A(X,v) , the density
of absorptions of neutrons at position X  in the core V  per
unit range of v . We denote by S(v~vVv) the function
previously called S (veev) . We define a kernel P(i"——}',v)
as the densigz_of absorptiqns at 3? idwhen one gﬁgfrgn 13 gg}gsgfd
isotropically ;tThi;(ikergeiltrtsvflggﬂs; de}nitriggl iwritCha;teimf, the
variable v merely specifying the constants to be used in
calculating the kernel, We then see that AL, V) satisfied

the following integral equation:

A(T,V) %r/ dv/ P(X—=X,v) S (Vi) A (R V') (4.1)
The kernel P 1is a one-velocity diffusion kernel, since it
represents the probability that a neutrnon emitted at a given point
at a given velocity suffer only elastic collisions and then be
absorbed at another point, We can obtain a form for P by
considering a simple one-velocity problem in which the tamper
constants are thnse »f velocity Vv y the total cross seection,
1s that of velocity V , and the fission ctoss section\in the core

in the core is set equal to the absorption cross section at velocity

V . The eigenfunctions at velocity Vv , gb,,('x', v) R

satisfy a one-velocity integral equation:
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/4 (®,v) = (v/ix P(X"—=%X,v) ¢4 (X, V) (4.2)
This can be seen from the arguments fnllowing equation (5.1) of
Chapter I. The kernel of such an equation can always be written
as a billinear series of its eigenfunctions. This expansion will

be, since P 1s symmetric:

/ (’,V) n 9)
PR~X,v) = {1/ )7d)<=gpﬂ (X V’; ~

(4.3)
The approximation to P which we first make is that of
setting all the za(v) equal to zg(v? « This gives
for P )

P X AD X A R

P -~ x,v)= o(v) /dx% xX,v) ‘ z/(v)

(4.4)
This approximation will be designated as the first lower approxima-
tion (abbreviated L-1) since it will appear that its use will lead
to values for the critical radius and critical 2z which are
smaller than the correct values. If we insert equation (4.4) in

equation (4.1) we obtain:

A (X,v)= ;,-L(‘—,) dv'S (v—v)A (%, V) (4.5)

This is a rather degenerate integral equation, since 3?
enters only as & parameter and the.kernel is independent of this




APPROVED FOR PUBLI C RELEASE

parameter, We can then integrate the equation over the core to

nbtain:

AV) =7;(V)/fv’3(\/’——-v) A (V) e

Here A(V) is merely the space integral of A (X, v) .
Equation (4.6) is seen to be identical with equation (2.3).

The next approximation consists in assuming that all the 24,

are very large except for 24 . Equation (17) then becomes:
{ X,V Xy V)
P(X—~%,v) = X)X, (4.7)

24, (V) /dX s (X, V)

We will call this the first upper approximation (abbreviated U-1),
since its use will always give too high a value for the critical 2z
or the critical radius. It is plainly an approximation of opponsite
character to the first lower approximation, since it replaces all
2 by quantities which are equal to or greater than the correct
values, whereas in the first lower approximation, all the 29
(an increasing sequence) are placed equal to 24 , the smallest
of the sequence,
Combining equations (4.7) and (4.1) we obtain in this

approximation:

AGY) =iy FED 5o S (e I EIAGKAD)

24 (V)
. N

APPROVED FOR PUBLI C &ELEASE'
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IV,

\
It immediately follows from equation (4.8) t-at in this approximation

A (X,v) has the forms:

A(FVv)Ae (V)Y (T v) (4.9)
If we insert the expression (4.9) in equation (4.8), we obtain an

integral equation for A, (V)

A= dX 252 (X, V) YdX xz (X, V)

”:’CV)/V’S(V’——V) dX o (X, v) s Xov) Av) (4.10)
This is of course identical with equation (3.2)

The general natnre of our two approximation schemes is now clear.
The Nth lower approximation assumes that the first N termus in the
bilinear expansinn (17) are taken exactly while all the ‘TW fron
”N onwalrd are taken equal to ’/N-i . The Nth upper approxima-
tion takes the first N terms exactly while all “urther terms are
placed equai to zero. This procedure is Sufficiently illustrated

by working out the second lower approximation. We place:

_ { zﬁn(x,v)%(
P(X—X,V)= z'/(v) W(R’V)gﬁ;,(i”v)+ 1( )m

/"7%2(7\0

! ]wmw R XAV NEAY
20 (V) " AR faE (K V) o) e AT LER V)

\'4 Xe\) { = >
2% @ H@] /A (%, v TV A (4.11)
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With this expression for thie kernel P. equation (4.1) becomes:

Pl = ! - i %()-(”V) ’ ’ >y -y >,/
AGY) [r/o(v} 2(v) df{a"(z\z)ﬁv“"“"’)ﬁ" 6 (TIVIARV)

L 4

+ dv’'S(v'—v)A(X,v) (4.12)

{
24 (v)

This equation is not easily transformable intn one or two integral
equatinns for one or tw» functinns of velocity alone. If we do
not try to treat a continuim »f velocities but restrict ourselves
to a small number of discrete velocity groups, equation (4.12)
is easily soluble,

The convergence of this sequence of approximations is
1llustrated in Appendix IV by applying them to several two-group
diffusion theory problems,

Ch.III. The Treatment of Inelastic Scattering in the Tamper,

In the preceding chapter we have seen that useful approximate
methods exist by which neutrom properties of some simple systems
can be easily calculated, even though a continuum of velocities
is nécessary in the description. We should now like to extend
our treatment to the the case where the tamper possesses an
i{nelastic scattering cross section. We shall see that our posi-
tion here is not nearly so strong as it was im the simpler systems
treated previously. We shall find ourselves unable to treat a
econtinuum of velocities and we must therefore make the approximation

of replacing the continuum by discrete energy groups.
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Section 1 Two velocit roups. General equations and
definitions, .

Let us first consider a system in which neutrons of only fwo

velocities are created and destroyed. Suppose that the system con-
sists of a spherical, homogeneous core surrounded by an infinite,
homogeneous tamper., Neutrons in the core can be elastically
scattered or can be transferred from one velocity to the other

by fission or by inelastic scattering. Neutrons in the tamper
can be elastically scattered, captured, or transferred from
velocity one to velocity two by inelastic scattering. We adopt

a point of view similar to that used in the preceding chﬁpter.
Neutrons in the core act by means of collisions as a source of
neutrons of both velocities, and by studying the absorption from
this source, we shall obtain the condition of balance satisfied
for criticality. We shall think of the inelastic scattering cross
section in the tamper as an absorption cross section for neutrons
of velocity one. We shall then have a source of neutrons of
velocity two distributed in the tamper as are the neutrons of
velocity one. It is then necessary to find what fraction of the
neutrons from this source are absorbed in the core, and include
these extra absorptions in the balance condition.

To make these ideas more precise let us first consider the
situation without the inelastically scattered neutrons. Suppose,
for example, that these inelastically scattered were removed and
not permitted to pronduee further fission. Later we can study the
actual contribution made by these inelastically scattered neutrons.,
Thus we have a problem without inelastic scattering in the tamper,

APPROVED: FOR-PUBEFC: REL EASE
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the actual inelastic cross-section being replaced by absorption.
In that case, we can use the ideas of Chapter II. In the simplest
lower approximation, we are led to write equation (3.1) Chapter II

in a form appropriate to just two velocities:

{
A, =;—;‘[3(1-"'1)A, +S(3—"'f)Ag]

Az =;/'—— [3(1 —=2)A, +s(a——a)A,,]

=0 (1.1)

Here A, and A, are the total number of neutrons absorbed in the
core at velocity one and two respectively, and zqo(dnd Z50)

are the 2z values which make a one velocity system critical which
had the cross sections appropriate to velocity one (and two) only.
The quantities S are the direct analogue of Sa(v—-v') « Thus
\5(1-a) gives the number of neutrons liberated at velocity two if
one 1s absorbed at velocity one, while 53(1—*1) gives the number

liberated at velocity one under the same circumstances, If a

- neutron is absorbed at velocity twn it has probabilities 3(6-'1)

and .5(2'—-69 to reappear at velocity one and two respectively.
The equations are easy to understand. For example, the expression
in the square brackét of the first equation is the total number
of neutrons liberated at velocity one and of these, as was discussed
in Chapter I, the fraction 2%; can be expected to return to
the core for reabsorption.

Now we must include the effect of the inelastically scattered
neutrons, A certain nunber'or neutrons are liberated in the tamper

at velocity two and these find their way back to the core and
contribute to the absorptions A, there.
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The neutrons are literated at various places in the tamper,

(the distribution depending on the shape of the tamper solution
at velocity 1) and thus have different probabllities of returning
to the core. For a simple argument let us define a quantity:

‘Ea as the average probability that a neutron liberated
in the tamper by inelastic scattering (from velocity) findsits
way into the core and is absorbed thers.

Then the term to add to the second of the equations (1.1) is
simply P, times the number of neutrons inelastically scattered
in the tamper. This number is not hard to find. It is just

X
2&- times the total number of neutrons absorbed in the

3

tam;:Ei since each absorption has this probability of resul ting

in inelastic scattering ( C%z? 1s the inelastic cross-section
in the tamper, and 0;{ is the total absorption cross~-section
of neutrons of veloclity one in the tamper and.is C?ﬁg

plus the true capture cross section). The number absorbed in

the tamper is just those which are not absorbed in the core.

Since of the neutrons liberated in the core a fraction 2%—
10
are returned to the core, the remainder, or 1-2% are
10

absorbed in the tamper. In this way we can understand the modifi-
cation of equations (1) to include the effects of inelastic

scattering?

1

1

A=— |S(1—1)A, +S@—1) A,

A,=— | S(1—=2)A, +35(2—+2) A,

*
oz __!__) 1—=1)A +(2-+1
+ -3 (1 ™ 1’,3[5( )A,( )Azn.z)

RELEASE
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These are simple equations which prove to be adequate to give
a close approximation to the sonlution of two velocity problems.
To use them however, some fairly simple way must be devised for
the determination of p,, . We shall derive several alternate
approximate formulas for this quantity and discuss the validity
of the approximations later in this chapter. We shall also be
concerned to some extent with the validity of the entire set of
equations (1.2), but strictly this presents no really new problem
(above those discussed in Chapter II) other than the adequacy
of a proposed formula for Pz - At the end of this chapter we
discuss the extension to a system with three, or more velocity

groups.

The determination of Piz requires an analysis of the
diffusion back to the core of neutrons which have been liberated
in the tamper, The dependence of the quantity on the index 1 is
solely through the fact that the neutrons of velocity 1 determine
the spacial distribution of the source. Let us consider neutrons
of velocity two released from any source in the tamper, S(r) .
We then consider a kernel Q, (r—=r’) which is the flux density
of neutrons (of velocity two) at position r’ im the core when
a unit source is located at position I in the tamper. The
density of absorptions A(r") in the core resulting from the
source .S(f) is then given by:

Al') =4 oia/‘g (r) Qz(r—-r’) r2dr
o ' —

frm -
- e
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The quantity Pie is the number of absorptions which occur

in the core in the fundamental mode:

477 JA(C) g, (r)redr - 478 /5, (r) radr
4Wo‘gfr)radr

In the expression (1.3) for A the source S must be taken to

(1.4)

12

be that arising from velocity one (equation below). We are
therefore led to study the kernel Qe more carefully.

The kernel (, 1is a diffusion kernel at a single velocity
and is therefore symmetric. We use this fact to obtain an

expression for it., Let us expand Oa(r—-r') as a series in the

normal modes at velocity two, Q&ek (r) with coefficients
’éak ) . We have:
Qa(r"——r'l)=Qe (r’——*r)={gk (r)%k ([") (1.5)

Consider a source of neutrons of velocity two in the core, having
the fornm % (t") . We use equation (1.5) and the orthogonality ‘
of the %k to obtain as the resulting density of absorptions

in the tamper:

a a
’I;k(r)=41r¢g:ﬁa(r’—-r) Y () e drmdrtagy &, ) o/g&‘ﬁ @r3dr e

Now we know that if neutrons are released from a source %k(")

1

the distribution of absorptions will be ;& r) .
zax Pkl

It is therefore true that if one net neutrnon is released in the

shape - net neutrons are absnrbed in the core, and
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We now integrate equation (1.6) over the tamper. We obtain

the total rate of absorption in the tamper which, by the argument

Just made, must be equal to { —
ZZk

times the total source

in the core, This gives:

a { a
a7t/ Ty () radr =((—;,=—,-()41/ 7z, (r)r? dr
C] (]

(1.7)
Combining 1.6 and 1.7 we find for ¢gk(r) :
o () = Tak () "—Zx. 4/ ‘%‘ (r)rédr
T4/ P Tak()redr  on¥ 4w /g (r)ridr
(1.8)

We can now insert this in equation (1.5) to obtaim an
expression for the kernel Qa in terms of the eigenfunctions and

eigenvalues of a one-velocity critical problem:

p)e G(r)  t-gy (W lrde g o
G;(I' r) { 4’VT%SK (t‘)t‘adt' 0"3 /y’:(r)rgdr %k@)
‘ (1.9)

Now let us obtain the quentity P2 defined previously.
For the source S(r) , we take a function with the shape of
the tamper solution appropriate to the fundamental mode for
neutrons of velocity one, but normalized so that one neutrqn‘is

emitted per second. This gives:

__Tio (r)
477 .
/ T (r)rdr
~ (1.10)

S(r)
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If we substitute this, and the expression (1.9) for (Q into

(1.3) to find A , and then use the formula (1.4) we find ps

can be expressed as:

a 0
0 (r)rzdra oz { )471' Tio (r) oo (r)r®dr

Piz = 2 2 —JE% - 2 0. 2
am gl (r)rtde opf V 20/ 4m/ T (0)r drasp/ To()redr

(1.11)
The expression (1.11) is exact.
In the next sections we shall discuss various approximations

that can be made to it, Before we do that, however, it may be

well to point out that the equations (1.3} 1P ¥Pi8huehs oFPBEAFergent

are themselves ndEFépproximations to the exact equatiohs will be
undertaken later,

\ Section 2 Neutron return from tamper to core: First
method of approximation.

We discuss in this and the next section various approximations

which can be made to the quantity Piz - There is one simplification
which can be made immediately. If we multiply and divide by the

core volume we obtain as a factor the combination of integrals:

Ly, (r)r2dr]®
| 7%%(:’)30‘:' 'o' r2dr (2.1)

We shall hereafter replace this combination by unity. This is a

——
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reasonable approximation. Except near the edge of the core the

inkr
function vfz, (r) behaves as i'kT_ . For ksa=0
(tamper having large cross section and no capture) the combination

is equal to unity, for kea=%-r it is C.98, and for kzaéf
, it is 0,88, It should be remembered that a large

value of kzzi corresponds to a poor tamper, from which the inelastie

return is less Important. This approximation therefore seems to

be good (and is certainly convenient). If this is done, we have

for p'a H

T 3
P - Of 1——1- /Tio(r)-’;o(f')rzgr._ai
12 o?a* %0 Tio(r) r2dr [ ao..r; ) Oredr

(2.2)

The various approximate methods of estimating }%2 are simply
alternate ways of evaluating the integrals (omitting the subscripto

for nornal mode):

6 T () T (£)radr
[“T(r2def T.()r*dr
(2.3)

This only requires knowledge of the shapes and not the size of the
functions Ty and T, . When the diffusion theory is valid these
j o
shapes are accurately known. They are of the form e-h.r
r

and e hat respectively. The constants hq and h,

are respectively 1/ 30;“0;"* and ‘/ Soz*cz, respectively.

Putting these forms into (2.2) and performing the integrals one
finds:
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a’ hzhg (1
P =3 (T+h,a)(1 +haa)(h, + he) "z’a

(2.4)

This is the first of our forms for p,, . It is exact (except
for aur replacement of the integrals (2.1) by unity) in the
diffusion theory. It may also be obtained directly from the
differential equations of this theory by studying the diffusion
into the core of neutrons distributed in the tamper as e,"""";
The expression (2,4) although only (nearly) exact for the
diffusion theory is nevertheless often a very useful approximation
when the accurate integral theory must be used. In this theory
the functions T, for example behaves asymptotiecally as e'h'%
and differ from this only near the core surface where transition
effects occur, These transitinn effects, especially when the
tamper does not have a large absorption cross section are often
quite small, and their effect in the integrals (2.3) is negligible.
One change must be made however, The quantities h, and h, must

now be determined from the usual secular equation for the Milne

equation in the infinite tamper medium:

he
(2.5)

where 7' and 9,_ are the usual ratios of absorption to that

S ——
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cross section: at the two velocities (g,= ;;?:

and 9a=_a;_‘::‘_§ ). The formula may be improved by
putting better formulas for T, and T, into (2.2) in which
the transition effects (which has been studied in many one-velocity
problems, see LA-53 and LA-258) are more clearly represented.

This probably leads to relatively complicated expressions.

In the next section we derive another form for p,, and show that

it takes somewhat better account of these effects than does (2.4).

Section 3 Neutron return from tamper to core:
other approximations.

The method we shall adopt to determine p,, in this section
is to set up an imaginary two velocity problem for which the
complete answer is known. Then using our fundamental equations
(1.2) for such a problem we shall find the value of P to solve
other problems.

To do this we consider an imaginary problem in which there are
two groups. The upper we call group X and the lower simply 2.
The constants of the lower velocity are exactly those of the
velocity two group for the real problem for which we are trying to
solve. The constants of group X however, instead of being those
of velocity one, are taken to be simply those of velocity two,
with one exception, however. That is we imagine that we add a
cross section Cﬁik of inelastic cross section which transfers
neutrons from group X to group 2 (the tamper absorption cross
section is therefore 0?::‘3 +o;3‘ 80',:1 ). Now this
transfer from X to 2 really makes no difference, the neutrons

still have the same properties., Thus we know that for the whole

system we can solve fop, 4R ST b A RELEASE

o e L U
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It is simply Z, o

The point, however, is that Piz depends on velocity one
only through the shape.of 'ﬁ and therefore p,, depends only
on the shape of the function T, representing the distribution
of X neutrons in the tamper. But the shape T, can be made
very like that of Ty by adjusting the value of O,
(and hence op,* )« We discuss the choice of O later,
but first let us see how we can determine pD,, ‘which we shall
later use as an approximation for P2

Let the Z- required to keep criticality in the upper group
be 2/ (which is not 24 because of the extr:a tamper absorption
ofxneutrons). We now treat this problem by the pair of equations
(2) assuming the exact critical 2 for the system is =zgz . Then
since X and 2 neutrons both may be pictured as producing
fission from each absorption with this 2Zr=z4 yand there is no
core inelastic scattering, we have
S(x—x)=24,S@—~x) =24, S(2—2) =0,5(x—~2)=0 ,

so that equations (1.2) become

Ay =i’Lx [”a Ay *”/aA.e]

*
_ Olxe - J_
a0 () mabimeran]

These equations (add them and divide by A, +Ap ) require
that
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To obtain an expression for Piz Wwe must now choose the value

of op% so that Tx approximates T, . We shall do

this by making the asymptotic forms of these functions the same

and hope that the transition effects are nearly similar. Thus

we choose hx = h' . We shall, to indicate this special choice
now use the notation 12 for x. We let 9& be the usual absorption

number in the tamper at group two, so that:

X
gs = 05; (3.3)
Oz
We can look at the quantity c’:ﬂé as the capture cross section

that would have to be added to the tamper at velocity two to make
the asymptotic rate of decay of neutrons of velocity two match that
of neutrons at velocity one in the real two velocity problenm.

We define 918 as the total ab;orption number necessary at
velocity two in the tamper to matech the shapes in this way. We

have:

(3.4)

We re-write equation (44) as follows:

—1"'-1- g2
o , (3.5)

P2 =

9292 11—

e
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This is the second of our useful approximations to Pz In

it the quantity g’a is the absorption number for gi'oup-two

neutrons in the tamper which would give the same asymptotic

exponential snlution for region 2 as actually does exist in-

region one., That is if g' is the true absorptisn number in

region one as in (2.5) we find Ya by determining hy from
~(2.5) and gz from a similar equation.

1=91 “TanhTh
' el

and 1-gqz ='—‘1——t,,,o~ hTH (3.6)
The quantity z,, is the » value&which would make a system with
neutrons of velocity two critical if the actual absorption number
in the tamper were g,, (instead of g, ).

We shall now derive equation (3.5) by another more formal
method which shows more clearly the approximations involved in its
derivation. We must first prove a simple orthogonality relation
holding between the neutron distributions in certain related one
velocity problems. (This theorem and its applications are described
in much more detail in LA- 608 . ) Let M (F—¥)o~(F)
be the probability per unit volume that a neutron released isotropi-
cally at —)?/ makes its first collisions at X . The position7
can be a core‘point or a tamper point so that &~ 1s a function
of position. The kernel M 1is, of course, symmetrical. Suppose
we have two systems, both eritical, with the same total cross section
as a function of position and which, therefore, have the same
Pf(?zzif). Let us call the function which is the total cross
section multiplied by the total number of neutrons emitted per

integral equations for 5&? and

—

collision g(X) . We zan-then write

LYY — L TTTe————

A
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Y7’ , the neutron densities in the two systems:

¥ ®) =/dTMFE—X) q (F)gr (X')

}0’(&') %Y/M ;-/_,—;) q/(-)?/) w/&—/)

We multiply the first of these equations by q’(i’) o (X)

and the second by q x) 9&(3?) , integrate each over all space

and subtracf. We obtain:
/7 [q ) =40 ) () = /33/d% [q' () - TIME-F

4R &) =4 &) g QME=T)GE) )|
(3.7)
In the second term of the righi: hand side of Eq. 3.7 we interchange
the dummy variables of integration and note that, since M(E("——Y)
is symmetric, this term now cancels the first. We obtain:

/[ -GR)| g () gr ) =0 3.8

We now specialize this general thenrem to the case of interest to
us. We consider two systems with the total cross-section in core
and tamper equal to Op and Gg* , respectively. In the first of
these systems we place the absorption number in the tamper equal
to 3& and place the reproduction number in the core equal to

f, , the f required for criticality. In the other problem we

place the absorption number in the tamper equal to the number 91:

previously defined, and the reproduction number in the core equal

U S 001 e e
A R —— e SR
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to ﬂa s the { required for criticality with this changed
tamper absorption. The quantity q(x) will be equal to (1 + f)o,:
in the core and ({1 -g)c-a-* in the tamper. We now write

equation (3.8), doing the integrals over the core and tamper

separately and obtain, writing 9&% and 5!%3 for the densities
in the core 1} and T, for the densities in the tamper:

4mr(f,-f,) 05 /r2d (v (r) (3.9)
(1 ) / rgs _4"_?(9‘:_9&) / 23r (O T, (')

We can also use the conservation law to get some other relations.
In each problem the total number of extra neutrons produced in

the core must he destroyed in the tamper. This condition gives:

4ﬂf¢a~ iy dr;&a(r) 4ﬂ9,ao~/r‘drTa(r)

2 , _ % /D
4mriop, r‘dr%(r)-47rﬂaoga/z:¢dr T, (v) (3.10)

If we now divide equation (3.9) by each of the equations (3.10),

we obtain:

1 _ 1)L redr () e () (3.11)
f, f.)o3 / ’r‘dr%(r%?’-dr;&a(r) )
M1 [ redr T (r) Tya(r)
(9a 5«2) '_7kr‘drT(r)/':} 2drT,(r)

We now multiply E//f.rdr and set the resulting combination
of integrals on the left equal to unity, as it will be very nearly
in all cases of interest, — ‘

APPROVED FOR PUBLI C RELEASE
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We have thus obtained an expression in terms of the eigen-
values of two one-velocity problems an expression for a combination
of tamper integrals approximating to the combination required in
the equation (2,2) for the quantity Piz . The function T, ,
appearing in (2.2), is duplicated exactly in equation (3.11).

The function T, , appearing in (2.2), is apprnximated by the

function T, . The function T, and T, match asymptotically

and bnoth have transition effects in the same direction at the

interface. By the use of Eq. (3.11) we can, therefore, expect

to obtain an expression for Pe of greater accuracy than if we

had used the asymptotic exponential tamper solutions for 1] and T} .
We combine (3.11) and (2.2) to obtain:

1 _
.G _1)Yoz* ;" §,
g; 9,2

We can express the quantities f, and f; in terms of the guantities
Z5 and Z{, previously used by the usual relatiom ( from Chapter I,

equation (5.1) )

Oz O33
2= + == f f, = e — 1
o2 Yo 4
- + 2 = -—-—-aa - O
2, =1 —-“ £, fiz - (1/,,_ 1) | (3.13)

The insertion of (3.13) in (3.12) yields, after noting that

03: e 9"._ o;* and rearranging,
= Ji2_ 2 ¥
Pe =

912_192 ! "é?a e ———— LT
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which is seen to be identical with the previously derived equation
(3.9).

The foregoing treatment would be expected to be excellent

if _hL and _bz. are each small compared with unity. The

o:* oz*
functions T} and 1; will then have essentially the character
which they have in diffusion theory. They will consist mostly
of the'asymptotic exponential solutions with relatively small
" transition effects at the interface. If we use equation (58)
for P12 » the size of .ﬁh does not actually concern us since
the function Té is not approximated in that expression.
Suppose, however, we consider what happens as %%%‘increases.
The function T] will decay more and more rapidly with a
transition effect which becomes relatively larger. This transition
effect is not matched by that in the function"l;z (except qualitatively)
so that equation (3.5) may be expected to become less accurate,
In many cases nf interest the inelastic scattering cross section
forms so large a part of the tofal cross section
in the tamper at the higher velocity that 51.;_ may be rather close
tn» unity and this defect in equation (3.5) may therefore be
serious.

A further related trouble can also occur. If %;g, is greater
than one, even the introduction of complete absorptiorf into the
tamper at velocity two will not give an asymptotic decay which
will match T, to T; (there being no meaning to the second equa-
tion 78 ). Even if 2;}313 less than, but fairly close to one,
so much absorption must be introduced at velocity two that the

asymptotic part of the function T, becomes unimportant and the

-

match therefore will again be poor.

‘

_1_1-42"-'5 .
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*
It is usually true for physical reasons that o7 1is greater than

* sy 1f one refers to the higher energy, and since %;%* is
1

necessarily less than one the second trouble will not arise in a

]

reasonable system, Exceptions may occur but this trouble is much
more likely to arise if the tamper contains flssionable material
so that neutrons entering the tamper at veloclity two can have
their energy increased to velocity one. We would then be
interested in calculating the number of absorptions, taking
place in the core at velocity one, of neutrons which have been
thus raised in energy in the tamper. This clearly involves
the calculation of a quantity P21 which will be just the
quantity p,, with the one and two interfhanged in the definition.
In overcoming the first difficulty it is clearly advantageous
to use, if possible, the correct function Ty . We can do this
by introducing sufficient absorption, ‘93, s iIn the tamper at
velocity one so that the resulting tamper solution T;, duplicates,
as closely as possible, the function T, . By using T3¢ as an
approximation for T, , and the expression (53) for the combina-
tion of tamper integrals which we need, we can get an alternative
expression for P, .. This procedure will, of course, overcome
the second difficulty since, h, 1is less than oF®, h, 1is less
than @z* , and if K, 1is greater than & , it follows that h,
is less than cs?* and the reverse procedure just outlined will
give us a reasonable value for the quantity p,, .

We proceed to calculate }%z in this alternative fashion.
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We define 92,as the absorption number necessary in the tamper

at velocity one to give an asymptotic decay equal to h, . The
eigenvalue f, will be the reproduction number necessary in

the core at velocity one to maintain criticality for a tamper
absorption 31 and f'_._, will be the corresponding quantity when
the tamper absorption is equal to'921 . The use of equation (3.11)

then gives:

Lo e P (O T® o §E,
/; r‘drﬁ(r){wr‘dr"'éa(r) o é’ é}, (3.14)

We then combine equations (3.14) and (2.2) to obtain the desired

approximation for Pz

i 1
or* F—1 :
pia"—r("_ )0_1: i‘--ff' (3.15)
9i 924

This 1s our third approximation to Pe

By some obvious manipulation we can obtain the following rela-
tion between the p,, which is caleculated as above and the p,,
calculated by equation (58) with the interchange of one and twos

(3.16)
oy on ( i,) Par

That this relation is valid in general may be seen directly from
equation (2.2).
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Appendix V, and very simple to calculate. The use of the exact
tamper s»lutions is prohibitively difficult and can be used,
therefore, only as a check upon the less accurate expressions.
The other two methods are fairly easy and intermediate in
accuracy. These two methods depend, however, for their usefulness
on the ease and acéuracy with which we can obtain the eigenvalues
for arbitrary one-velocity problems. With equal mean free paths
in core and tamper we can get good accuracy by the use of the ex-
trapolated end point procedure. Reasonably accurate calculations
can be made for unequal mean free paths by the methods mentioned
in Chapter I,

Section 4 Validity of the approximatioms inherent

in the general equations.

In the last sections of this chapter we shall discuss the

technical problem of extending this formalism to systems with
three neutron velocities and to systems with finite tampers.
Since no essentially new ideas are required for this, it seems
advisable at this point to discwss in more detail the accuracy
of the entire scheme of equations (2), even granting that p,,
may be known exactly. We shall consider the equations (1.2)

as a first (and most practicai) nf a series of approximations

to the exact equations, To study this in more detail we shall.
first have to write d-wn the exact eguations in the two-velocity
case. To this end we shall call the density of absorptions at
velocities one and two A,(r‘) and Ae(r) respectively and intro-
duce coefficients  S(i—=k)  as at the beginning of this

chapter,

AP. ED FOR PUBLI C RELEASE
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It is identically satisfied by the formula (2.4) for p, so it
glves no new result in this case, but for formula (3.5) it yields
the new relation (3.15). An analysis of the transition effects

as they affect the accuracy of formulas (3.5) and (3.15) indicates
that (when the sizes of h,, o;*, h, op* are smch that either for-
mula may be used) these formulas err on opposite sides of the
truth in many cases., It is pnssible that this may be true in
general, and if this theorem could be established it would permit
us to put limits on the error made in calculating Piz + In

that case we could put the theory with tamper inelastic scattering
on the same sure footing as the theory when this scattering is
absent. At present writing this has not been done.

We now have four methods for calculating Piz Using
equation (2.2) we can first assume that T, and T, have the
shape of the asymptotic exponentials thereby obtaining equation
(g.} 9. We can second assume the correct T,
b;btﬁini;lg ?lavgéogargsél?i)rd assume T, and approximate T by T.y

obtaining equation (3.5)
A Tfinally, with sufficient effort, we could assume the correct

and approximate T

functions for both T] and T, . All of these methods coincide
essentially in the diffusion limit and the various methnds which

we have devised merely represent various ways of taking into account,
to various extents, the transition effects which occur at the
interface except in the diffusion limit., The quantity P2 is
calculated for some typical cases by each of these methnds in
Appendix V. The use of the asymptotic exponentials is of the

greatest general use since it is reasonably accurate, as shown in
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Finally we also need the kernels Pi(r'——-r) and B_(r'———t‘)

which are the densities of absorptions in the core at r when
one neutron is released at r/ at velocities one and two
respectively, We obtain by elementary reasoning the integral

equations:

A, (r)=41_l%-a"d‘r’ REer)[S(1—1A,¢) +5 @~ DA, )]
A, (r)=41% o ‘“dr'B (r’—-r)[S(l —2)A,[r)+S (@—+2)A, (r')]
+ar /o4, e r)Bi—1A ) +S (1) A, )]
° (4.1)

The first equation states that all absorptions of neutrons of
velocity one arise from neutrons liberated at velocity one from
previous absorptions. The second equation states that all
absorptions of neutrons at velocity two arise either from neutrons
liberated at velocity two by previous absorptions or from neutrons
liberated at velocity one which were inelastically scattered to
velocity two in the tamper. This latter effect is expressed by
the last term in which a new quantity F, (r'—r)
appears, We define the kernel F,e (r'—-r) as the density
of absorptions of neutrons of velocity two taking place at position r
T On I nes absorption fn the corer 18 ineiastically Fooirion
scattered in the tamper, and finally returns to the core to be
absorbed.

The new kernel can easily be expressed exactly in terms of
the previously defined kernel Ql(r’—-—r" o": .
This latter quantity is the density of absorptions in the tamper

for one neutron released per second in the core at velocity one at

\_
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of these absorptions yield

b 3

position r’ . A fractiom 2:2}
14

neutrons of velocity two, so that for one neutron emitted per

second at velocity one at position r’ , we have a source

density of neutrons of velocity two in the tamper given by:
’ " x
S (") =q (r'—r") ors (4.2)

Now we find the density of absorptions at position r in

the core resulting from this source., This is, from equatiom (1.3)

00
Fie (mr) = 4 e 0y Q) (o) Q (' P2 (4.3)

We could now use the expression (1.9) for the kernel Q@ to
obtain an explicit expression for ﬁa .
What approximations can be made to reduce (4.1) to a useful
form? The approximations which can be made of the kernels P, and
B were discuséed at considerable length in Chapter II. It
was there shown that a very useful approximation, the first lower
approximation, was equivalent to replacing P‘(i"'—-—"’) . by
(‘iL"'o)SG\"— ')'(') and B by a similar expression. Our problem
here is to discuss approximations which can be made to F,(r™=r)
(with the hope of course of eventually transforming (4.1) into
] (1.2). We shall discuss this by discussing approximations to
| C),(rﬁﬂ-r) and C& since [ can be expressed by (4.3)

in terms of these quantities.

AEEEEiiiiiiihngttﬁtRELEASE
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An exact expression for Q is given by equation (1.9} (we
drop the subscript indicating which velocity group we are dis-

cussing. The index Kk represents the mode in question).

T () (1—-— /g[r(r")r"‘dr"
Qr—~r)= Z‘ k/“ll(r)r"-dz‘ o3 * / w’(r)r‘dr wi(r)

To make progress we must develop an approximation to it. One
way is to observe that the functions T, (r) are nearly all of
the same shape, so that the first factor is nearly independent
of the mode K . This is exact in the limit of diffusion theory
since Tk(r) are merely simple exponentials characterized
only by the tamper properties. 1In the factor containing these
quantities, we therefore omit the subscripts and take this common
factor outside the summation sign. It is clear that this procedure
will become less accurate as we depart farther from the diffusion
limit, This is so because the tamper snlutions depend, 1in the
transition effect at the boundary, on the core distribution.

We shall discuss this in much more detail below. Making

this épproximation we obtain:

T(r’) () A b (¢ r3dr?

41?0;*‘7 “T(r)radr .k ‘f() / w2 (r)redr

Q(r-=r)=

(4.5)
The sum on K may now be performed exactly. We can use the
completeness relation for the yﬁi and the bilinear expansion
for the one-velocity diffusion kernels defined in Chapter II:

APEECti PUREC=—RE EASE.
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(It has been tacitly assumed that we are interested in neutron

distributions which are functions of r only).

L) (X) .
%/'drwka (;() =/ (=) | (4.6)

| G R)Yr X))
Y 7 B (4.7)
We now integrate the expressions (4.6) and (4.7) with respect to

one variable over the core to do the sums indicated in (4.5) and

nbtain:

Q(r—-r') = Tagr’) [1 -4 1/ }5‘(r—-r" r”"‘dr"] (4.8)
4 ﬂo;;.:/ T redr (]

It is instructive to show that this expression can be under-
stood in a more physical way. Suppnse that nne neutrnn per second
1s released at velocity one from a spherically symmetric source
at radius r’ , By definition F}(xﬁﬂ-xfg are absorbed per
second per unit volume at r‘ . The total number absorbed per
second in the core is the volume integral of Iﬂ(rﬁ——r?)

’”

over all points in the core « The total number absorbed

per second in the tamper must then be equal to:

a
1—41/?, (x’—-r”)r”‘dr” (4.9)
0
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The distribution of these absorptions in the tamper must have,

at least in the diffusion limit, Jjust the shape of the previously
defined function T, (x) « If we normalize this shape to unit
integral and multiply by the total number of absorptions in the
tamper (4.9) we obtain the density of absorptions at ’ in the
tamper resulting from a unit source at [ in the core. This is,
by definition, the kernel Q(r’-—- r)a‘a* t in agreement
with equation (4.8),

The expression (4,8) for @ can now be ingerted into (4.3)

to obtain an approximate expression for 'ﬂa :

OZa 0”1& Ax/ T (r) To(r) rédr
fe €=1) = o¥ o 47r§ ;T(r)r‘dr 415Z°° T, () r2dr (4.10)

X {1-47%?, (r-—-r”)r”“dz"”}{1 “4'7%?3 @c—r")r”&dr”

Recalling the expression (2,2) for P this can be simplified

t
FZ,_ (r—r) = w"" {1 47t / P (@—r")r"3dr }

a 3
{1_41/é& (l""" t'” r ”&dru} . N %
4mwa’ {-
° (175%) (4.11)

If in the exact equations (4.1) the (inexact) relation (4.11)

is used these equatinns are seen to depend only on the kernels P
These kernels can be approximated in a series of aporoximafe forms
just as in Chapter II. We shall only exhibit the case corresponding
to the first lower approximation here. The extension to the higher

approximations are obvious by analogy, and an example 1s given in
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Appendix V. It must be pointed out, however, that these approxima-

tions cannot converge tn the frue answer (except in the diffusion
theory 1imit) when there is tamper inelastic scattering, This is
because they converge to an exact solution of (4.1) only after the
expression (4.11) is used, and this latter is itself inexact. We
discuss to some extent the accuracy of 4.11 at the end of this
section. Since 4,11 is inexact it is not too sensible to try to
solve (4.1) very exactly when (4.11) is used and the method of
first lower approximation of Chapter II should be sufficient.

In this method we set every elgenvalue in the bilinear expansions
for ﬂ and I% equal to the lowest eigenvalue. Equations 4.3
and 4.4 of Ch., II then yield:

H(’-—X)~7:;/X-X
x—-x)-E-/( (4.12)

A correspnnding expression for the kernel F}a can be obtained by

Inserting the expressions 4,12 into equation 4.10. This yields, ﬁé:

R
Fo(r—r) = 0"1:( bfo) 4-7/;;’(“‘ (4.13)

With these approximations, equations 4,11 become:
Air)= -1;;,[5 (=04, (€) +S (@~ 1)4, ()]
A ()= Z[S5(~2) 4, (r) +S (2—~2) 4, (r)]

or {
‘6?,1*;5{' ”o) - ,/2 - Fa e/ e A1)
+s@@—~1) 4%‘&!\8 (r)}

(4.14)
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We now integrate each equation over the core and dennte by jl'
and A, (without arguments) the t-tal number of absorptions
taking place in the core at velncities one and two respectively.

We obtain two algebraic equatinns for A, and 1\& H

-3z [s4—=1a, +s@— 1) A,]

ﬂ

,—}é—[s (1—=2)a, +sE—2)A ]

+°f"¢(1- Pe[s(1—=NA, +5(@~1A,]
(4.15)

These equations are identical to the equations (1.2) at the be-
ginning ~f this chapter., We see that they correspo»nd to several
approximationgs. First, and pnssibly best, there is the approxima-
tion of using first lower approximation. This was discussed in
Chapter II. There is further the difficulty that can only
Methods to do this were discussed in sections 2, and 3 o% this chapter
be calculated easily approximately‘T’Finally there 1s the approxima-
tion used in nbtaining the expression Fi in the form (4.11) or
what is the same thing, the step leading from (4.4) to (4.5) in
the calculatisn of Q , in which all the tamper functions have been
assumed to be nearly of the same form., We shall discuss this
approximation at some further length now, but unfortunately will

not develop a simple way of decreasing the error made by it.

The expression 4,5 for the kernel Q is nnt in general correct
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because, as has been pointed nut, the transition effects will be
different for the different normal modes and the step which leads
from equation 4.4 to equation 4.5 will therefore be incorrect.

The difficulty is equally obvionus from the physical point of view
that led to an interpretation of equation (4.8), Here one is now
unable to say that the distribution of absorptions in the tamper
depends only in size on the point in the core from which the
neutrohs are released. We are therefore unable to write Q, (t"——-t‘")
in the factored form (4,8) where each factor is a funcetion only

of »one variable,

Having pointed out the difficulties, we shall now see, that
there 1s certainly gnnd reasnn to believe that the expression
(4,10) for the kernel F\a is a uwseful approximation even when
diffusion theory is not valid, Although in general there will be
transition effects at the boundary, these effects will be quali-
tatively similar for the various normal mndes, in that the neutron
density in the tamper will always rise above the asymptotic
snlution close to the core~tamper interface. This positive dis~
crepancy will always decay rapidly away from the interface but the
characteristic length of this decay, while always considerably
less than a mean free path in the tamper, is less for the higher
normal modes than for the lower, This is so because a core density
which osclllates rapidly compared with a mean free path sends posi-
tive and negative neutrons out normally to the interface in about
equal numbers. This cancellation does not occur for neutrons

emerging at an angle so large that the essential contribution to

the emerging neutrons (within one mean free path from the interface,

————

measured along a chord at the emerging angle) comes from the
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positive part of the density closest to the interface. This
enphasis on large angles in the emerging distribution for the
higher modes means that the first collisions necessary to establish
the asymptotic tamper solution will be made closer to the interface.

In view, however, of the qualitative similarity of the
transition effects for the various normal modes, it is reasonable
to believe that the combination of tamper integrals occurring in
the expression 4.3 for F,, when used for 4.4 will be nearly
independent of the indices k and j which run sver all normal
modes for velscities nne and two. We would then obtain the expression
(4,10) as an approximation to F,, .

We can also consider this approximation from the physical
point of view that led tn an interpretatinn »f Equation (4.8).
Consider a source of ﬁeutrons in the form »f a spherical shell
at radius I’ in the core. The resulting density of absorptions

can be represented by a curve like the following:

- t—————

‘ a r

The curve in the tamper will be asymptotically an exponential but
will have a transition at the interface. In the core the curve

will consist of increasing and decreasing exponentials arranged to

be finite at the center and- ngve a disea_ntinuity of slope at r’.

APPROVED FOR PUBLI C Rl p
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There will be transition effects at the source radius and at the

interface. The region near the interface will not be affected by
the position of the source provided the source is far enough away,
l1.0., more than a small fraction of a mean free path from the inter-
face.

The shape of the curve in the tamper will therefore be indepen-
dent of except when r’ 1is very near to the core radius in
the sense previously mentioned. Equation (4.8) will therefore be
correct, except when r’ 1is near the core radius, if 'T(r)
and Ié(r) is the correct tamper solutions for a source inside

an absorbing core.

Section 5 Extension to three or more velocity groups.

The me thods which we have developed so far in this chapter
are sufficient to s lve two-velocity problems with sufficient
accuracy for practical purposes. The representation of a problem

with a continuum of velocities by a reduction to one with two

| velocitles 1is, however, rather crude. We should therefore like
to develop methods for handling problems with three or more neutron
velocities without any drastic increasse in the amount of labor
required. We shall also not be able to obtain arbitrary accuracy
for three-veloclity problems but for practical purposes we can do
sufficiently well.

The approach previously used will be useful but some extension
will be necessary. We can again write the neutron densities in
the core at any veloclity as a series of the normal modes appropriate
to that velocity. We can then, in principle, write a system of
simul taneous equations between the co-efficients of these normal

modes to describe the balance bstween neutron production and neutron

absorption at every velocity.

AP ED FOR PUBLI C RELEASE
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To do this we must, of course, calculate the distribution of
absorptions in the tamper from each normal mode and calculate by
the methods previously evolved the distribution of absorptions
in the core of singly inelastically scattered neutrons returning
from the absorptions in the tamper. If we then make the assumption
that only the fundamental modes at each velocity are important
we would then have a scheme like the one which we used for two
velocity problems. One difficulty remains, that of calculating
the number of absnrptions of neutrons of velocity three in the
core which have been doubly inelastically scattered from velocity
one in the tamper., In order to be as brief as possible, we shall
eontent ourselves here to deriving as simply as pnssible expressions
to take into account this double inelastic scattering. We shall
not attempt to exhibit the errors made in the formulas, although
this can be done, because it leads to very complex expressions,
and nothing essentially new is learned. The errors are of exactly
the same kind (but somewhat larger, by accumulation) as @hose made
in the discussion of the single inelastic scattering. They are due
to neglect of transition effects tn various degrees.

The fundamental equations (1l.2) when generalized to include
inelastic scattering and limited to a system in which the neutrons

have Jjust three pnssible velocities, become

© sl
e
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(5.1)

Here the quantities are defined exactly analagously to those of
equations (1.2) for two groups, exceot tn simplify the writing we

have made the abbreviatinns

G‘=S(1—>1)A1 +5‘(a-—-’)Aa +'5(3""1)A3
G=S(1—=8A,+5(e»2) A, +SB—2) A,
G3=S(1--3)A,+S(a—-93)Aa+3(3——3)AJ (5.2)

so that A, A,y A, represent the number of neutrons absorbed
in the core at each velocity, and G,,Ga,G3 have the significance

of the number at each velocity which are generated in the core.

The first two equations of (5.11) are just as in (1.2), the third
represents the absnrptions of group~three neutrons. The first

term represents thnse generated at velocity 3 in the core which

are returned to the core.
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The second term represents neutrons which are generated at velocity

one, are inelastically scattered in the tamper with cross sectinn
o3 directly from velocity one to three, and which are ab-
sorbed at velncity three in the core. The form is obvious and it
is elear that P13 is just analagﬁus to the Pia of previous
sections but is calculated using cnnstants »f regions one and
three, rather than one and two as for Pe - The third term
represents those generated in the core at velocity two and which
thereafter are scattered inelastically to three in the tamper and
subsequently absorbed in the core, This leaves out of account
neutrons which start at velocity one in the core, are inelastically
scattered tn region two in the tamper, and then before returning
to the core are inelastically scattered again from two to three,
eventually being absorbed in the core at velocity three. It is
clear that this effect is accounted for by the last term if:

P123 "~ is defined as the average probability that a neutron
liberated at velocity two in the tamper (by inelastic scattering
from velocity one) is inelastically scattered again to velocity
three, and is absorbed in the core at that velnocity three.

These equations (5.1) which are rewritten in simplest form
in Chapter IV, are the equations which may be used to solve three
velocity problems with practical accuracy. Theip use, however,
requires a method of estirmating P123 .

We can find this by an analogue of the method used in section 3
to find Piz - Clearly Pie3 ( 1like Ptz ) depends on conditions
at velocity one only through the shape T,( r ) of the snurce of

neutrons at one., We can take an imaginary problem with the

constants of regi-ns two and three as they actually are, and
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change .region one to a region x which has the constants of two,

but an inelastic cross section so adjusted that T, 1is close
to T, (exactly the same value of arxz in fact as is
required, as for p,,; by equation (3.6). Then the quantity may
serve as a good approximation to Pie3 « The Pxa3 can be
found since we know the 2r (say 2z ) required to make the
whole system critical as it is just a two velocity problem with
velocities two and three which can be solved by methods already
worked out. The Pxz3 1s adjusted so that (5.1) will give the
right answer in this case. There is no loss in generality in
determining the PXZ.S in simply letting group-three neutrons
only regenerate group X and this simplifies the values of

S(i —-j) . They all vanish except 5(3—’)() =Zz¢ . Of

course or:s is to be taken equal to ora*a as is every
crass section for eegion x and & except that a;: and
o;_: differ by the extra or;‘a in o;: « Equations (5.2)
give qQ = 24 AJ , Ga=0 and 63.-.:0 so that the
equations (5.1) reduce to
A =5 2 A
1~ 2y €43

C"*

YixXe g
Az"‘ 0 + 0}: (1 ”x an ”CAJ

orz f oris ,_ 1

AEd (41— - - —
Ay=0 + o3f (! px)an%Aa"’o"'a.x:s (i ”X)ans"éA(as 3
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Only the third of these is reocuired and this determines Pxa3
immediately in terms of Zz4 (divide by A, ). We may next deter-
mine by the two group problem with two and three. We may observe
that this is Just what is obtained if the neutrons from three feed
two directly but do not feed x . That is for this case all §
vanish except the single S(3 ——6)=l/c . Hence G'=G3=O, Ga=%A3

and the equations (5.1) become,

A,=0
=L ., A, +0
2 Zp €73
*
A3=O+O+—at:££—(f——-)pza ”CA.? +0 (5.4)
Oza
Thus, again only the third equation is needed and it yields
| _ oras f
a—— =..._T — —— [~
”c oa'a ' )Pas 105)

when this is substituted into the third of the equations (5.3)

there results an expression from which Pxes may be determined:

X
or i
( )Pes a.*(’ x)an*;.;?(";)(“)Pxea (5.6)

(This expression may also be seen directly by careful reasoning).
We now choose ‘ﬂﬁ:& as in equation (3.4), and define 31l the

3 quantities and 2y =24, exactly as in this case.

APPROVED FOR PUBLI C REL
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Then we c¢an take F&23 as P183 « We can also approximate Pxs by

P13 since the former is the transfer from Tx to three and the
latter is that from T, to three, and Ty and T; are nearly

equal., Hence we finally obtain a useful formula for P2y ¢

p i

szag'gfgg",_‘_ iz =9z {312('_—)}’33 -9:("" 7z )qu} (5.7)

To use this Pi3 and Pe3 may be obtained by any of the methods

outlined in sections 2 and 3, Unfortunately Piz3 is obtained as
a difference of terms, and this makes the accuracy of Piez 1less
than that of quantities like Py . It is probably true that the
best results are obtained if p,3 and p,3 in (5.7) are both
calculated by the same method, and presumably it is best to use
the method of section 3 (equation (3.5) ). This is because
the derivation of (3.5) is like that of (5.7) and some thought
indicates that if this method 1s used the errors in Pz and py4
after substitutinon in (5,7) tend to offset each other rather than
accurmlate,

There are, in analogy to the case of P12z » many other forms
that Pies can be written., For example, by eliminating 2, by

equation (3.5), and expressing it in terms of Piz

Pra3 = f:;’:‘ {g'a iy (Pzs—Pis) +(1~Pi2) pza} (5.8)

(This can also be derived directly by other methnds). There is
no point to this (it is identical to 5.7) if the p's are calculated
by (3.5), which is the recom-ended proceedure, but if another

formula (say 2.4) is used for the p'sS the relation (5,8) may be

——— N
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Again, we might have made the analysis of p,, in another

easler to use.

. way, in that we could have put the constants of group two

simlilar to group three and thus obtained a new form. This simply
reverses the role of groups one and three. The easiest way of

seeing what will result is to find p,3 (obtained by formula 5.7)
(simply by interchanging the constants of group three with those
of group one) and then nnting as in the case of P12z » eduation

(3.16), it is possible to demnnstrate a reciprocity relation:

"“‘T Pias = ( z, ) —&2-p.2a (5.9)

so that py,, 1s known when Py, 1is found in this manner.
If this method is applied to 5.8 there results

ggx‘_..?:f_a_.m ff) (i
Pie3 o7a 03: 02§ ) {93& (Pet F31) ( Ps2)P:K 5. 10)

and of course other combinations are pnssible, using equations

(3.5) and (3.15). In calculating P3z Just imagine the inelastic

scattering to be reversed and equal to ag;é (but do not change

*
0‘;_: and O3, ) so that the neutrons gn from three to two
instead of vice-versa. Then 932 i1s the g needed in region

two to reproduce the absorption in region three.

APPREVED FOR PUBLI C RELEASE
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Section 6 Extension to systems with finite tampers,

We now wish to develop a method for treating the case of a
homogeneous, spherical core surrounded by a homogeneous, spherical
tamper with finite outer radius. In the first place to apply
our methods at all, we must know the solutions (critical 2 , etc.)
for one-velocity problems with finite tampers. If the core and
tamper are of equal mean free path the method of the extrapolated
end point described by Frankel, Nelson, and Goldberg in LA-53
and LA-258 can be used to obtain very accurate results. When the
free-paths are unequal the approximate methnds of Feynman (LA -608 )}
or, of Serber (LA - 234 ) can be used,

We shall consider only the case of two neutron velocities,

Nnt only will the critical 2 values be different but the
fundamental equations (1.2) will have to be altered in case the

tamper is finite. The term in these equations,

%
X

o (1 ”w) Pi2 [S('*i)Ai+5(a‘*‘)Aa] (6.1)

must be changed in form, if P is still defined as the number
of core absorptions at velocity two per neutron liberated in the
tamper. Of course, the formula for Pi2 will be altered, but be-
side that the term (6.1) in equations (1.2) must be replaced by:

aj' $1+ L 2.) Pe {_5(1——1)A, +s(a——1)Aa] (6.2)
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This term is to represent the numher of neutrons liberated in the
core at velocity one which are inelastically scattered (with
eross-section C’?z: ) in the tamper and are eventually absorbed
in the core. It can be understood in the following way. Of the
neutrons liberated in the core, which are S({—=1)A+S(2—~1)A,
in nuﬁrer, a fraction E%;' are returned to the core. Hence
1-—‘323 are not returned to the core. One of two things may
have happened to these neutrons. They either have been absorbed
in the tamper, or they have leaked out of the nutside of the tamper,
3uppose we define: L,
is the number of neutrons (of velocity one) which leak out of the

tamper for each neutron which is absorbed in the tamper.

1Then it 1s clear that
E{f- [3(1———1),4, +s(a——1)A?_]
is the number of neutrons of velocity one which are absorbed in
the tamper. Of thnse absorbed the fraction, ﬁ;%EL
are inelastically scattered, and these have the gﬁance Pie
of finding their way back to the core at velocity two, by
definition. Thus the form (6.2) is explained.

For finjite tamper problems then we have twn quantities to
calculate Ly and Piz -« We should first point out that }%a
cannot generally be calculated by a method of imaginary inelastic
scattering analogous to that used in Sectinn 3. This is becawse
it is not possible to reprnduce closely the function T}(r) by

adjusting an absorption cross sectinn in region two to make a

function Ty = :P,z .
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This is because, although the asymptotic éxponential rates h; and
h, may be made to cnincide, the boundary conditions at the

outer edge are different, and thus the ratio »f rising to falling

exponentials cannot generally be correctly matched at the same tinme,

Put another way, the extrapolated end points will be unequal.

For that reason we can find Pi2 only by the analogue of the

method of section 2 in which we use explicit functions for 1] and
T,

2
finding first L, and then py, .

and neglect transition effects. This we proceed to do,

Consider the neutrons which are lost from group one in the
tamper. The absorptinns of neutrons of group one are distributed
approximately as

ot Sinh hy (b“"‘X’"I‘)

c
1a r

where C 1is a constant Pu is the decay constant of the asymptotic
solution in the tamper and X, 1is the extrapolated end point at
the outside of the tamper. This distribution neglects the
complicated transition effects at the core-tamper interface and

at the outside of the tamper. We have defined a quantity Ia‘ as
the number of neutrons of velority one which leak out of the tamper
per neutron absorbed. This quantity can be approximately calcula-
ted in the following way. With the distribution jJjust given, we
integrate over the tamper to obtain the total number of absorptions
and calculate the neutron current leaving the outer edge of the
tamper. The current corresponding to an asymptotic neutron flux
density N is:
T8

_——

A

v N
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This is easily shown by consideration of the integral equation
and is seen to apprnach the diffusion theory expression for smallfa ’
which is correct.

The expression (6.3) will give the current wherever the
asymptotic density is correct. We make the approximation that
the current at the surface is correctly given by (6&). This is
valid for 9: o s Where the current is independent of radius,
but becomes worse as 9 is increased, because of the difference
between the absorption in the transition effect at the outside
surface and the absorption in the asymptotic density, which we
have used to replace the transition effect.,

We now obtain for L, , by dividing the above calculated

current by the total absorptions:

h}b cosh hyx, +sinh hj Xy
a cosh h,(b+x,~a)+3inh hy(b+x,-a)-h bcosh h x,~sinh h,x,

L"n’ (6'4)

where a and b are the core radiws and the outside tamper
radius, respectively, * Note: * Frankel and Goldberg (LA-258)
describe methods whereby L1 can be calculated exactly (exéluding
transition effects at the core-tamper interface). That is the
approximate formula (20) for TT is corrected at the outside
edge of the tamper. The result is that the combination

hyb cosh hyxq + sinh hyx, which appears in the numerator,
and last haif of the demominator, and which arises from (20),

1s to be replaced by (if we call op=1)

APPR%D FOR PUBLI C RELEASE
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=gy 4L
h'Vlégq(i-hf) (b "/ Teds)

where T, is a certain expression depending on g given in
LA-258, These expressions would be identical 3f the square root
could te replaced by the cosh hux1 and if ﬁ’— times the
integral could be replaced by tanh ((hy X

{
That this is nearly possible can be seen from the following table,

2~ A h1xi
g 1/5-—5-3;2(1_,\2 cosh (hx) ;[ms tanh 2
0.0 1400 1.00 .7 7
.2 1.23 1.21 75 79
oLy 1.72 1.63 .80 «87
6 3,26 2.9, 87 95

Since g 1is rarely as large as 0.4 we can use the simpler form
given in the text. Actually 1if g 1s as large as O.4 the entire
formula is inaccurate for another reason, For such a large
transition effects at the core tamper interface are considerable
and 1imit the accuracy of (20).

To find P12z We shall use an approximate representation of the
tamper densities by asymptotic sonlutions of the integral equation.
We define a kernel Q. (_x"——-"x”) as the flux density of
neutrons of velocity two at a point 7?V arising from a source

of one neutron per second at X o We call the tamper solution
for group one 1}(7?) and approximate it by the asymptotic solu-

tion so that:

T, () =-3inh h;(b+x,-r)

-_
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To the accuracy which we used in deriving the previous

expressions for P,, , we have for p,, @

b
16ﬂir‘dr[;""dr'1?(r) Qp (c—=r’)
4 {%"re dr T, (r)

Pz =07, (6.6)

As before, we replace Q,(r—r‘) by Q, (r—er) , because of
the fact that it is a symmetric one-velocity diffusion kernel,
We then note that

4%‘3‘&'02 (r~—=r)
is just the :flux density in the tamper of neutrons of velocity two,
arising from a uniform source spread over the core, of unit

strength per unit volume. Of the neutrons from such a source,

4 gra’ 1
———3-——-' n number per second, a fractinn equal approximately
{
to 71:: are absorbed in the core, a fraction { — -;;a‘ are
lost in the tamper, and »f these a fraction 1 -:'L ( L,is
e

defined by replacing 1 by 2 in the definition of 1., ) are actually
absorbed in the tamper., We can then write the desired density

in the tamper as:

-z, Agd | L@
*
t+L, ©3, 41% r2dr T, (r)

where T, (r) 1is to be approzimated by:

(6.7)

sinh biLb + Xz —r)

(6.8)
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If we now do the indicated integrations, we obtain an

explicit expression for H
al oz 1 h% h2
Ra= 2 Oy 1--) 2
"ot o (72 [Sirhac=ZnbK|][S:*haac]

'lf""la hq""rla

x{(sl Ce —Z Ke) +(cy S -Ke e _ G Cp— Ka.)'{clsg— Kiz'e.)} '

(6.9)

The following abbreviations have been used:

Sy =sinh hy (b—a+ x,) Z,=sinh R, x,
¢,=cosh h;(b—a+x,) K,=cosh h,X,
S;=sinh h, (b—a+ x;) XZ,=sinh h X,
ce=cosh h,(b—a*x,) Ky =cosh h,x,

It can easily be shown that as b is allowed to become very
large, this expression for Rz approaches the expression given
by equation (2.4) of Chapter III for an infinite tamper. This is
to be expected since the two derivations are completely parallel
except for the thickness of the tamper. The formula as it stands
is complicated, and some experience in 1ts use would probably
permit one to find simpler approximations tn it, but we have

not done a great deal of wnrk with finite tampers as yet.

APPROVED FOR PUBLI C RELEASE
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Tn appendix VII we give a numerical check of the procedure

which we have developed for two group finite tamper problems.

No actual calculations of this sort are available, because »f

their difficulty when done by more cnnventional methods. e

therefore use the methnd to snlve a one-velncity problem which

has been artificially split intn a two-velocity problem by the
additioh of an inelastic ecross-section in the tamper. The problem \
can then be solved exactly as a one-velocity prnblem and we thus

nbtain a reasonable check of the meth-d,

Tn extend the methnd ton problems with three or more velncities
would require the study of quantities analagnus to Piz3 for the
finite tamper. This is difficult to work out for the general case,
and entirely satisfactory formulae for this case have nnt been
worked out.

If the total mean free path is nearly the same in all energy
groups then the methonds of section 2 and section 3 can be
applied to nobtain an appropriate formula for the analogue of Py3

Chapter IV _ Special Methnds for the Solution of Many Velocity
Problems. -

We propose in this chapter to describe specific procedures,
based an the developments »f the preceding chapters, for the
solutinn of a useful variety of problems. We shall shnw how to
calculate the multiplicatinn rates of systems composed of a
hamngeneous spherical core and a homogeneous spherical tamper with

arbitrary outside radius,

#
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We shall try to devise suitable tests nf the accuracy o»f the
methods given and shall indicate how the methods may be extended

to include more general problems.,

Section 1 Reduction of multiplying systems to equivalent
ritical problems.

We first state and prove the following useful theorem.

Any system in which the neutron density depends on time through

a factor e"’t can be thought of as a critical system (density

constant in time) in which a velocity - dependent capture cross-
section equal to {%? is added to the system. The proof 1is

elementary. Consider the Bnltzmann equation describing the system.

If n(X, Vv, t) is the complete density function,
we have:
gf— +V-$Rn +vorn =S (1.1)

<

Here S 1is the source of neutrons being restored to x and
and is explicitly independent of time, being the result of some

linear Integral operation on n « We write n-—-n,('x',V) ea’*

and obtain:

axn,+V ¥n, +tve-n, =35,
or Vvno+v(o +—$—) No=So
(1.2)
Here S, is the result of the same operation on n, that gave S
when operating on n . From equation (1,2) we then see that the
system is equivalent to a time independent one with total cross-

<
section o~ + 37 and no additional snurce involving & , so

(74
that the —F is essentially a capture cross section,
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We shall then treat only critical systems, it being assumed that
all multiplying or decaying systems have been reduced to critical

by the use of the above theonrem.

Section 2 Methods for problems with no inelastic
scattering in the tamper.

Let us begin by outlining the methnd which seems most useful

for the solution of problems in which the tamper does not scatter
inelastically. We shall use the first lower approximation developed
in Chapter II. We consider a system compnsed of a hnmogenenus,
spherical core with radius a and a homogeneous, spherical tamper

with outside radius b . The core is characterized by a total

cross section og(v) , a fission cross section op(Vv) *© ,
a capture cross section oz (V) , an inelastic crnss section
c?(vﬂ s a fisslion spectrum x(yj normalized to unit

integral, an inelastic spectrum %(V’-’v) (=O forv>v’)
normalized to unit integral over V s a total cross section
cvz*(wo in the tamper, and a capture cross section 6?‘(V7
in the tamper. The value of Z#/ for fission is given and it is
desired to.find the multiplication rate of the neutron density.
We guess a multiplicatinn rate e and add j%% to the total
and capture eross sections in core and tamper, We then wish to
find whether the resulting system 1s critical with the given
value of zr . We do this by finding the value of 2 required
for eriticality. If the ceritical 27 is higher than the actual
2’ we have guessed ton high a value for & and must adjust

the next guess accordingly.

————
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Usually two teials will give a useful value for the multiplication

rate,

In order to find the eritical value of Zr we write equation
(2.3) of Chapter II:

AW) ;:@ ﬁ;"s(v'»m(vp

(2.1)
We can write S(v™—v) explicitly in terms of the cross

sections (o~ and @3 are understood to have the ‘—;-“absorption added) .

We define an absorption cross section OS(V)=0L’(V)"'0¢'(V)+0F (v)

and write S(v/i—v) as:

oo o7 (v) oy OTV)
S(V V-) ”X(V) O‘a‘(V’) +¢'(V V) Og(V') (2 2)

Equation (1.3) hecomes, remembering that inelastic scattering

must decrease the energy of a neutron:

[« 2] / a0 /'
A(V) = fi(‘i’—ﬁv'f‘f—&l A(V)* o faver i) 21D 4 v

) 44%, o3 (V') [, oz (V)

(2.3)

For convenience, we chonse the size of AQ/)  so that one

' neutron emerges from fission per second. That is, we place:

|

v /dv LA/ A(v)=1

(2.4)
oz (V)

. y
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With this normalization, equation (5) becomes:

B www»v)a;;‘l({,—f} A(V) (2.5

All the functions in equation (2.5) are known except for A (V) and
2, (V) . Since z4(v) 1is just the 2 required for
criticality in a certain known one-velocity problem (Chapter II),
we can calculate it by the methods suggested in Chapter I so that
only A(v) remains to be found. Equation (2.5) can then be inte-
grated numerically step-by-step. Supponse Vo is the highest
energy of the fission spectrum. Then A(Ve) 1is just X (Vo)

2%(Vo)
We start A (v) with this initial value and find it for

successively lower valuesof v by using the values already found
tn do the integral on the right-hand side of equation (2.5).
We finally obtain the complete function A (V) , on the
assumption of the normalization (2.&), If the function A(V) is
then substituted in the normalizatinn condition and the integral
perfommed, we obtain the value of &/ required for criticality.
This procedure is a useful one in cases where one desires a
detailed picture of the spectrum of neutrons present inside the
system or escaptng from it, It may be expected to be very accurate
for the untamped case, in which case the assumption of no inelastic
scattering in the tamper is exact and in addition the first upper
approximation will be extremely good because of the similarity in
shape of the untamped eigenfunctions at all velocities, Its

accuracy may be less but will still be very good in cases where the

properties of the tamper do nnt vary wildly with velocity.
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Section IIT Special simplifying assumption for
inelastic scattering.

There are some cases with a continium of velécities in

which the integral equation can be solved exactly, and a great
deal of numerical work can be avoided. For example, it may

be sufficiently accurate to represent the inelastic scattering
cross sections in a special form such that the integration of

equation (2.5) is much simplified. Suppose we could write:

oy (V) ¢(v’-—-v) =rf§ oR ) xpn (V) (3.1)

This is Jjust the assumption that the inelastic scattering behaves

as though there existed various varieties of fission, each with

its nown cross section as a function of velocity o~n(v’) s and

associated with each kind of fission a different normalized spectrum
Xn (V) s and with a 22 of 1, In order to represent real

inelastic scattering op(v)  should be taken different from

zero only for values of VvV higher than those for which x, (V)

is different from zero.

If we now write equation (2.5) we have:

xX{(V) 7 ’
A(V>=1/°(V) I/(V)n- xn (V) o,(V)A(V)dV

(3.2)

This can be reduced to a set of N 1linear inhomogeneous algebraiec

equations for N unknowns. We define:

on (V)
A / a (V) A(V) dv
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and obtain:

x(v) N Xp (V)
A(V) —”(V} +Z'. An "'”;"L(_‘;j' (3.4)

which gives the function A(v) in terms of the known functions
x(V)s kn(v)and Z(v)and the unknown coefficients A, . These

coefficients can be determined by multiplying equation (3.4) by

%;@{%% and integrating over all v ., We obtain:
3
o0
Om(v) x(V) / (V) Xn(v)
Am ®
& W) %m ZA © z,(v) &V 3.5)

This set of linear algebraic equmtions are easily solved (if N is
not large) and we then have A(v) from (3.4). We can finally
find the » for criticality by performing the integral
indicated in equation (2.4).

It should be finally poninted out that the integmal equation
can also be snlwed if the inelastic scattering can be represented
by another form. Suppose yﬁ(vﬁafv) is of a form analagous to
that arising from collisions of neutrons with protons, equation
(2.5) can be integrated as a first order diffemential eguationm,

That is, suppnse we can wrlte, with sufficient accuracy

@ (v—=v) = & (v) b (V) vy v (3.6)

———

R
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(for neutrons on protons this can be done exactly,

¢' = ¢a~= 2 . We then have for equation
{(2.9)
(V) g [, o (v) N A fers
A o Tz dvo-( ) B vIAK)
: Y

ot (v’

ar¢a°(“;’ A >52:2’))+ dv #—) & (V)A(v)

(3.7)
This can be differentiated with respect tn v to abtain:
d |zs, (V) o (V) d | x(v)
—— | A(v) |+ = v)A(v) (3.R)
dv [qﬁa(v) oz (v) #(v) dv e (v)
This can imrediately he !ntegrated t- give IK(V) as an indefinit

.
fntegral on v . In penaral the intepgral cannnrt be performed

analytizally, but giod accu-acy can be sbtained by the use »f
Simpson's Role, »r some ewmivalent meth~d., The application of

this methnd to the treatment »f the hydride problem has been given

by Ehrlich in LA-SC8,
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Section 4 The method of velocity groups

A somewhat less cumbersome procedure, which is not exact
but will give good accuracy in critical mass calculations (but not
so detalled an energy spectrum), is the so called group approxi-
mation, We assume that neutrons have only certain discrete
energlies and average the cross sections in such a way that
reasonable results are obtained. This appfoximation can be put
on a rigorous basis if there 1s no inelastic scattering in the
tamper. We proceed to do this by one possible methnd,

In equation (2.5) we write A(V)=07(V)N(V) )
where N(v) 1is the flux density at velocity V integrated ower
the core. Equation (2.5) becomes, if we multiply by 24, (V)

and remember equation (5.11) of Chapter I (for 2z, in terms of f,

]
where f 1s the number of excess neutrons required per collision

for criticality):

[05 W) +£(v) o"(v)] NW) =z x (\f)oﬁ :roo? (v )N(v)
+/aver (vi—v) o7 (V) N (V) (4.1)

In equation (4.,1), we interpret the left-hand side as the number

of neutrons lost from veloclity Vv per second and the right hand
side as the number added to velocity ¥ per second. Equation

(4.1) of course says that these must be equal for criticality.

The first term on the left, @3N , 1s the number lost by
absorption, whereas f@*N is the number lost by leakage into

the tamper. We shall think of f@* as an effective cross section

for loss of leakage.
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We now define n energy regions or groups, as we will
call them, which do not overlap but collectively include the
complete range of energy. Let us call 1(1 and Vv; the lower
and upper limits respectively of 1ith group, and understand that
the first group has the lowest energy. We then integrate
equation (4.1) over the { th group and obtain:

,( ;} (V) Nyv)dv + r‘(v) o~(V)N(v)dv =

z//{;&(v) a‘V; fV)IN(v)dv’

Vi @©
%vv/iv 90(v v)or (V)INE) 4.2)

We define:

Vi
P‘(V)(iV" Dﬁ

L

Avioz (V)N (v)dv
‘4‘" N(v)dv

=a~;"

(4.3)

é;" £(v) o~(v) N(v)dv i

. = fo~
4. - N(V)dv

Vi
4 “x(v)dv = x;

L

Ar‘oy(v)N(v)dv i
AV N (v)dv -
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Equation (4.2) can then be written, reversing the nrder of inte-

gration in the term involving the inelastic cross section:

H - n
&7 N; +TL N =Vx-lf_‘:;b?ij

L Vi
%iv’or(v’)N(v?(dv;&(v’-*V)
vi 3

/dv m(v)N(v_/fv;&(v—cav) (4.4)

We further define ui

/dv’m(v)N (V’)/ dv;&(v’—»v)

- I
= o
/"I dv N(v) :
(4.5)
The quantity 25?1‘ is essentially an average inelastic
scattering cross section from the j th group tn the { th

group. It is different from zero only if jzi . Its
values for i=j represent an additinn to the elastic cross
sections arising from inelastic scattering which fails to remove

a neutron from the group in which it started. In the definition

(4.5), the V; 1in the integral over V could be replaced by v’

since o (vi—sv =0 for v >v’

Equation (4.4) cen now be written:

(4.6)

9
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If the average cross sections occurring in equation (4.6)
have been obtained by integrating over the actual spectrum, the
set of Ni and the & obtained will be identical with their
correct values. The approximation which will be used is that of
using an approximate spectrum (guessed or calculated on some
simplified assumptions) to obtain the average cross sections.

The solution of the set of equations (4.6) will then yield an
approximate value of 2 and the aprroximate number of neutrons in
each group., If a reasnnable number »f groups are used, so that
the cross sections do not vary widely within any group, the
approximation to the average cross sections will be excellent and
we can therefore expect to obtain accurate results for 2/ and
the spectrum,

The procedu~e which we have given contains specific recipes
for averaging the absorption cross sections, the fission spectrum,
and the inelastic spectrum, all in the core. It is implied that

the average velocity of a group is given by:

[v N(v)dv
/ LN (v) dv (4.7)

This is so, because the velocity enters only in the form of an

ahsorption cross section <

\"4
No very direct .procedure is implied f»r averaging the total

core cross section, the total tamper cross section, or the tamper

capture cross section. These quantities enter only in the calcula-
e |,

tion of f o~ and all that can be said precisely is that fge

should be averaged in the same way as an absorption cross section,
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In practice it is usually adequate to calculate fo~ as the

fawfor a nne-velocity problem whnse cross sections in both core
and tamper are reasonable averages over the i’ th group of the
actuval cross sections,

It is clear that the procedure which we have outlined for
solving the integral equation (2.1) will work equally well for
the set of simultaneous equations (4.,6), if all integrations are
replaced by appropriate summations. The use of the group approxima-
tion makes much more practicable the application of the sequence of
upper and lower approximations described in Chapter II. This re-
mains difficult, however, because the one-velocity eigenfunctions
are not sufficiently well known., Upper and lower limits can be
put on the critical radiuvs and £he critical 2 by the use of
a perturbation scheme like that which led to equation (II-9) of
Appendix II. These procedures are sufficiently illustrated by
their application to some two-group critical calculations in
Appendix IV,

Section Methnds including inelastic scattering in
the tamper,

We now propose to apply the methods of Chapters II and III to
the calculation of eritical problems in which inelastic scattering
is present in the tamper., We do this first for the case of an
infinite tamper. We discuss the case nf three neutron velocity
groups, since this fully illustrates the general method.

As 1in Chapter III, we define a total absorption c¢ross section

in the tamper as the sum of lnelastic and capture cross sections
(assuming no fission in the tamper). Neutrons leaving the core

make inelastic collisions in the tamper and these collisions then

form a source, in the tamper, of lower energy neutrons.
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The diffusion of these neutrons back into the core must then be
treated by the use of the quantities P, Pg, By, B3
defined in eaquations (2.4), (3.5), (5.7), or (s5.8)

of Chapter III.

Using a notation similar to that of equation (4.6), we

write:

o Nt o7 Ny =2ox, (o Ny +os, N; +o5, N, )
(5.1)

On the left-hand side is the total number nf neutrons removed per
second from group one in the core by absorption and leakage. The
right hand side is the total number engering group one per second
(by fission), The term for , which gives the leakage, includes
the loss by inelastic scattering in the tamper, since Q is assumed
to be calculated with inelastic scattering in the tamper treated

as capture,

We can write a similar equation for the second velocity group:

52 Np +£,05 N, =2 %z (071 Ny + 05, Np+ o5 N;)
d”*
tops Ny + 0?0;3 Bz Ny
(5.2)
The last term on the right is just the total number of absorptions

per second taking place in the core of neutrons diffusing back
into the core after having been degraded to velocity two by an

inelastic collision in the tamper.
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This is easily seen if it is remembered that f, ofN,

is the total number of neutrons of velocity one which'are absorbed
in the tamper per second, that a fraction {;%%é. of these

are degraded to velocity two, and that a fraction Ha of these
(Chapter III) are absorbed in the core. Eauation (5.2) is then
best understood by transposing this term to the left. The left-
hand side is then just the total number of neutrons per second
removed from velocity two in the core by absorption and leakage,
exclusive of those which were returned from a degradation in the
tamper. The right hand side, to which it must be equal, is just
the total number of neutrons of velocity two produced per second

in the core.

A similar equation for group three follows immediately:
Nt ;05 Ny= 2 x5 (O3 Nt N; * o3 ;)
top Ny *+o7s N,

X X
or Ore |
*fiof o;a’j'f 33N1+fa°2'5~§i' B3N,

+ dﬁfg

or 5% PaslNy

ta (5.3)

The only term in equation (5.3) requiring further explanation is
the last one, which must be added in to take care of the neutrons
which are twice degraded in the tamper before reentering the core.
The equations (5.1), (5.2) and (5.3) are exactly equivalent to
(5.1) and (5.2) of Chapter III, simply rewritten in a form more

convenient for practical calculation.

.-
i . R
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If onlv two groups are used, just omit equation (5.3) and set

N3y =0 . In this case, if the tamper is finite, replace Py
by —Pa .
T+ L,

The method of solution of these three equations is just that
described for the equations (4.,6). That is, the total number
of neutrons produced by fission per second is normalized to unity
(for convenience) and the equations solved step by step for

Nys Nz o Ny . The value of 2 1is then

found from:

> =(o7 Ny +o5 N, +o5 N;)
(5.4)

Although we have made a considerable effort to provide a
reasonably vigor»ous foundation for these equations, it is clear
that their best justification must come from actual numerical
comparisons with more trustworthy calculations, It is impractical
to do an actual calculation (except with the methods here given)
to an accuracy greater than that given by a two-group calculation
with the so-called F% spherical harmonic approximation to the
solution of the Boltzmann ecuation. Many comparisons of this type
have been made, with excellent results, but for our purposes it
is sufficient to make the comparison with two group diffusion theory.
This is done in Appendix V.

It is also profitable to make variows sorts of internal compari-
sons of the methnds here developed. One questionable point is that
of the accuracy attained by the use of the quantities Rg, Ra3

ete. We can shed some light on this by performing a typical three-
group critical calculation in two ways, first by the use of the

definitions (3 o 5) aantpg&I’E@) REDEA%& End P1 23 ’
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and second by the use of the definitions (3.15) amd (5.7). These

two sets of definitions were derived in widely different ways

and were seen to be most useful under different sets of conditions,
The discrepancy between the two approximate calculations can

then be taken as a reliable estimate of the absolute error intro-
duced by our approximations. A comparison of this sort is also
made in Appendix VI,

It is difficult, in the few selected examples given in these
appendices to convey the impression of confidence in the accuracy
of these formulas which one obtains when actually working with
them and comparing them time and time again with surprising
success to the results of much more difficult but more exact
calculations,

It should finally be pointed out in a little more detail why
the group approximation (or something similar) is essential to
the treatment of inelastic scattering in the tamper. Suppose
we had a tamper in which many inelastic collisons could be made
by a single neutron. We would then have to use quantities like

Pies Pizss Pi234 etc. These quantities (except for the
first twgd seem to be exceedingly difficult to calculate with any
degree of accuracy, so that a restriction to a small number of
velocities is necessary.

There do exist problems however with a continuum of velocities
which can be treated by our methnds. This can be done if the
inelastic scattering function in the tamper is so restricted that
a neutron once inelastically scattered can make no more inelastic

collisions, or possibly oniyone more, We illustrate with the

case where no more than one inelastic collision in the tamper is

T —— —
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permitted. We write the integral equation analagous to the

simultaneous equations which we have been using:
’ V]
=— /dv’ - g
AW) ”°Mo/ S (vi=v)A)

o0 oo t Y *
/o favan sty |1 5| Dxih Bty
o /o < (5.5)

Here the second term on the right gives the number of absorptions

taking place in the core by reason of single inelastic scattering
in the tamper. The function p(vﬂ;v) would be written in our
previous notation as py~y and is Just the return to the core
of neutrons of velocity v released in the tamper distribution
characteristic of velocity v”. Equation (5.5) will not in
general describe the system correctly., It will however do so if

¢*(V’-5——V) ' and 0?*(\/') are nowhere different
from zero for the same value of v ., 1In this case, a neutrnn
nnce degraded cannot be again inelastically scattered and equation
(5.5) is correct, at least to the extent that our previous
approximations are valid.

The equation (5.5) can in principle be snlved, ir particular
by a numerical step by step procedure, but the work will in
general be prohibitive. By the use of the continuous analogue
of Pya3 s @ simllar equation can be written in the case where
a neutron can be degraded not more than twice in succession in
the tamper. This equation is naturally very complicated and

about equally useless,
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Section 6 Other problems amendsble to’the methods
described herein.

In actual practice it will usually be necessary to treat
systems which are less idealized than the ones which we have
considered so far. A partial list of useful extensions of the
foregoing formalism might include methods for treating:

1. Systems departing from spherical symmetry.

2. Systems contairning holes, or other inhomogeneities,

3. Suberitical systems containing a steady source.

We shall outline how several of these generalizations may be
made. Consider first the case of a non-spherical system, such
as a homogenenus cubical core imbedded in an infinite homogeneous
tamper. If the cubical cnre problem were solved in general for
neutrons of a single velocity, the extension to many velocities
would be simple because none of our basic results thus far depend
essentially on the spherical symmetry of the core. They do
depend on the assumption that the fundamental modes at the various
neutron velocities do not differ radically in shape in the core.
This assumption should be equally valid for cores of any not too
irregular shape, so that to treat the cubical core, we hé&e only
to obtain the eigenvalues for the appropriate one-velocity problems
(with cubical cores). This is not easy, but the difficulty does
not lie in our many-velocity formalism.

Consider now an otherwise spherical, homogenenus system with
an infinite tamper having a small hole at its center. Such a
system is encountered when one changes the degree of criticality
of a system by removing material from the center. The consequent
change in the value of 27 required for criticality can be

APPROVEDFORPUBLI C' RELEASE
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obtained by the consistent application of the formalism thus far

developed with the specification that all one-velocity eigenvalues
are to be calculated for systems with holes in the center. The
reasoning here is exactly the same as that just used for the non-
spherical case, but it is now possible to carry through the
calculation with ease, This is so because the eigenvalue for

a spherical one-velocity system with a hole in the center is easily
calculated by a simple perturbation scheme involving only the
eigenvalue for the system without the hole, the volume of the hole
and the ratio of the neutron density at the center to the average
neutron density in the core.

If the hole is not at the center, the perturbation will also
involve the angular distribution of neutron velocities at the hole,
and if the hole is in the tamper, the procedure becomes meaningless,
More general inhomogeneities in density can presumably be well
treated by the same method if they occur in the core., Here, the
difficulty in obtaining good one-velocity eigenvalues becomes very
severe. Again, variations in tamper density render the method less
valid, because the tamper densities in the one-velocity problems
cannot be made to coincide so closely by changing the absorptions,

If the inhomogeneity consists of variations of composition,
so that the system is not divided into a core and a tamper each
with homogeneous composition, the method breaks down. A clﬁmsy
perturbation treatment can still be made, if the composition is

nearly uniform, but the main advantages of the method are lost.

RO/ UEL 1 C. REL e e
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Another important type of problem 1: that of a subcritical
system which multiplies a steady neutron source. The application
of the formalism to a problem of this type 1s sufficlently
f{l1lustrated by consideration of an untamped active sphere with
a source at the center. Here one uses one of the series of upper
and lower approximations described in Chapter II, with the glven
source introduced into the original integral equation. A set

of inhomogeneous equations will be obtained which can be solved

to obtalin an approximation to the number of flssions occurring
per second.

Better results will be obtained by the use of the first
collision source, rather than the point source at the center.
Neither the first upper nor lower spproximations will be adequate,
because of the bad shape of the source, but the second lower
approximation will usually give good accuracy.

This problem has been very carefully studied from the point
of view of the methods developed herein by Ashkin and by these
and other methods by Serber. Ashkin was able to treat the multi-
plication of en untamped sphere with a continuum of velocitles.
For practical problems with metal spheres, however, the method
of velocity groups was sufficient. For amall spheres Serber's
method of successive collisions was also able to deal with the
complete velccity spectrum. The matters are discussed in detall

in Serber's LAMS -~ 253.
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Diffusion theory check of assumptions
APPENDIX I. for first lower approximatione

We wish to obtain some numerical confirmation of the basic
assumption underlying the U~{ and L-{ approximations. We
consider a two-velocity problem in the diffusion approximation,

with the following constants:

or=or*<4 op =1 oz*=0 a=0.48690
or =of =8 03.=2 oz¥ =0 11626 .

The quantity & is the radius of the core.
The fundamental modes at the two velocities have the shapes,

in the core:

U, (e) = sinkr

r
sinkyr
Ug(t') = .__I.'_._ﬂ_.
(2)
where k‘and ka are to be determined. The corresponding tamper
-h,r ~h,r
densities are -£ r' and & ra . The quantities h, and

ha can be determined from the cross sections in the usual way,
and we then require that the logarithmic derivatives of the
densities be continuous at r=a . The problem has been so

adjusted that:
i
kja=73

_5
koa=24 (3)
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We can then find the value of a/ which would have to be
associated with the core absorption cross section at each velocity

to maintain these fundamental modes at eritical. These turn out

to be:
2, = 1.86731
2 = 1.33880

(4)
We then calculate, both exactly and with the approximations
of Chapter II, the density of absorptions of neutrons of velocity

two from a source with the shape of w, . We have:

A in ky ¢
T 3oz vE(nv), +tom@v), = 2T
(5)
This ylelds for @v), :
___ 3o , .
r(nv), k2 +3070s, sinkyr +Asinhy30p0z,r
(6)

Where A must be adjusted to satisfy the boundary condition at
r=a. Equating the logarithmic derivative of (6) at r=2a to-hy 4

we obtailn:

3oz kicos kya + hz sin kya
A= TR .
"Z Za 139202, o3 h {36707, a+h.sinhfdozog, 4

(7)
The density of absorption can then be calculated as (nv), &gy -
With the L-1 approximation of Chapter II, this density of

absorptions will hav<.>—~'che-~s.hap‘_\'ll kgr and a size such
\
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that its volume integral is Just ﬁ%— times the volume integral
4
of the source. This yields:
a
{ rdr sin k.r sin kar
(nv), 05, = /‘i e : 8
3/0' rdr sin ker r

The exact expression is compared with the approximate expression
in the first of the graphs immediately following. An exactly
similar calculation can be made of the absorptions of neutrons of
velocity one arising from a source -—§in;szL~ . The results
are hlotted in the second of the succeeding graphs.

A more stringent test of our approximations would be obtained
in a case where the values of k1a and kpa differed more widely.
This has been done for a similar case with k,a=~g‘ and k,d =§7:'!
and the results plotted in the third and fourth graphs following.
It can be seen from these plots that our approximation is a
reasonable one.

It is of interest to consider the number of neutrons absorbed
per neutron emitted from the source. This number has been
approximated by 2%~ and can be calculated exactly by multiplying
equation (6) by @3, 4 integrating over the core, and dividing
the result by the integral of the source over the core. We label
the four cases previously cnnsidered in the order given and list

the values of 1 and the correct absorption ratio:

v 1
case v Correct Ratio
I 0.7469 00,7396
TT 0.5356 0.5398
III 0,720 0.8773
v 0.5898 0.,5647
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APPENDIX II
The sign of the errors of the upper
and lower approximations

We wish to show that the critical 2 and critical radius

given by the first lower approximation (equation (2.3), Chapter II)
will always be less than those given by the first upper approxima-
tion (equation 3.2), Chapter II). To show this we fix the radius
and the value of 2 and inquire by what factor would the neutron
production per absorption need to be increased to make the system
critical, That is, we write instead of equations (2.3) and (3.2)
the following: |

!
My )= 5 S m) ()

@)
_t_ 2 y ’
)\VAU(V)=%(V)/1’v’S(V—-v) M, (v, v)A, (v)

, ax X,V X v)
where M, (V, V) —ﬂ7¢o'a(’?’ v)/d?‘%‘ X, v)

Here 7\.L and Ay are the quantities by which S(VL-V) must be

divided in the first lower and first upper approximations respec-
tively in order to make the system eritical. If )LLis unity, for
example, the system 1s just critical by the first lower approxima-
tion. If Ay 1s greater than unity, the system produces too

A_EPW PUBLI C RELEASE
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many neutrons and is therefore supercritical. We proceed to show
that }\L is always equal to or greater than )\U « A given system
will therefore be more active in the first lower approximation,
and hence the critical radius énd critical 2 will be less in
this approximation.

We note that M,p(Vv,v’) will be equal to or less than unity
by the Schwarz inequality. We therefore write:

Mo (v, v’) = 1-N (v, V)
(3)

where N 1is a pssitive function which will be sniall compared with
unity if the eigenfunctions %% (X,V) are reasonable, We imagine
that equation (1) has been solved and the eigenvalue )\L obtained.
We then obtair Ay by a first-order perturbation caleulation.
We write: ANy=ALT AN

Ay=AL +tAA (4)

Eaquation (2) becomes, if we neglect nbviously second order terms:
{ .
NAL TN AATANA, =255 /dV 'S(v’—’v){{\l‘(v’) -NA(v)+AA(U j (s)

We use eaquation (1) to eliminate two terms and obtain:

\
AN AAYANAF ”(V%V'S (ve=v)AA (v’)-,%(?,% v’S(v’- V)NAL (v’)
(6)
There is an integral operator adjoint to that in equation (1) whose

eigenvalue is also )\L o The corresponding eigenfunction

satisfies:

A A (V) %V’S(V""V)y’}, 1(v) AL (v)

}(7)
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We multiply eauation (6) by ZL and integrate over V. Ve

obtain:

Ny fAVE, (VAA) +AN AV AL (V) AL (V)
%%v’;,o—'@- S(v=v)AL (V)AA (V)
%v dv’;,;ziv) S(V=V)NV, V)AL (V)A; (V)

(8)
Use of equation (7) yields:
Ny fAVAL(V)AAW)*AN /dv AL (v) AL (V)
=X fdvAL (V') AA (V)
{ -
- ﬁ%v’w S(v—v)N(wvIAL (V)AL (V) »
or, with some obvious manipulations:
/ﬁv %) S(vVv)N,v)AL (V)AL (V)
AN
/ dv AL (V) A; (v)
- (9

We now show that A-I. (v) and A[(v) do not change sign and
hence that AN i1s essentially negative. A rigorous pronasf of
this assertion seems difficult but a sirple physical argument
can be given. If we have a system which according to eocuation (1)
is not critical, then it is intuitively clear that it could be
made critical by dividing ,S(V’—-—V) by a real positive number X; .

If the system has thus been made critical, we can normalize AL(V)

so that nne neutron, for example, emerges from fissions per second.




APPROVED FOR PUBLI C RELEASE
—~— Sy

Since all processes contemplated in equation (1), except for
fission, degrade the energy of neutrons, we can then use equation
(1) to solve for ALbd by a step~by-step method. A positive
number of neutrons will be present at the highest energies because
a positive number of neutrons are emerging from fission. Positive
numbers of neutrons will then be present at all lower energies

by reason of inelastic scattering from above and positive numbers
of neutrons emerging into the lower energies from fission. With
this normalization it must then be true that A (v) 1is positive
for all v .

To show that ‘Ziﬁﬂ is also positive definite we wuse the
same argument. The equation (7) can be thought as giving the
neutron spectrum for a problem in which inelastic scattering
takes neutrons from low energies to high and the fission spectrum
and cross sectlon are interchanged. We then normalize Zijvj
so that one neutron emerges from this inverted fission process
per second and solve step-by-step starting at the low snergy
end. A;(v) must then be positive also. It then follows from
equation (9) and the arguments just made that AA 1is negative
and the assertion with which we atarted is therefore true.

We should now like to demonstrate that Ay and A lie on
opposite sides of the correct value. We again use a first-order
perturbation treatment, which becomes somewhat more difficult
because of the necessity of taking into account the space variation
of the kernel as well as the eigenfunctions. We consider three

kernels:

e

J
|
|
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e
e

S
| z"’- A C‘,V) o}v) /@——7)

ETR argee v

R (X

1 Y Cov) Y (X5 v)
20 4 (V) ‘/&;’%a V) 10

L HE) @V
%W /ax gt (2, v)

P(x-——xv)n

BRX—=X,v)=

We write the 1ntegra1 equation (15) of Chapter II as:

NA(G) ATV BTT) (v ) AR, ) an

Here A 1is again the number by which S(v~=v) would have to
be divided to make the given system critical., If the three
kernels (10) are inserted in equation (11), three different values
of the eigenvalue A are determined. We shall denote these by
AL sy Ay and ’\U e The first measures the activity of the system
according to the first lower approximation, the second gives the
true activity of the system, and the third measures the activity
according to the first upper approximation. We then wish to show
that i1f the three values of A are calculated by a first-order
perturbation scheme starting from the first lower approximation,
the true value of A must 1ie between Ap and Ay,
We write the integral egquation (11) as:

A-aNaL (G v +AA R v)]

SESaS (v mv) R (R {:{_ f)-AP(R“’——x,v)][ux,v)mA(x v

- e
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The function A, (X,Vv) satisfies the following equation:

NALTY) 5/av'S(virv) Zoey Ap (Rov)

(13)
In finding Ay we could ignore the space dependence ofAAL(f}\O
because of the highly degenerate form of equation (13). If,
however, we wish to base a perturbation calculation on A, (X,V),

we must be more careful. We write:

AL (V) =AL (V) E(X) (14)

Here f(x) 1is an arbitrary function of position to be determined
later and A (v) 1s just the solution of equation (1). We
rewrite equation (12), neglecting second-order terms and making

the cancellations, possible by virtue of equation (13):
ALAA(ZV)-AAA, (V) E(R)
=ﬁv’s (vev) 3;1?;7) AAR,V) ﬁ:’f”ﬁ vS(viev) A PR, V)ALW)E (1’9(15)

We multiply through by the function )KL(Vj satisfying the integral
equation (7) adjoint to equation (1), and integrate over velocity.
Two terms in equation (15) then cancel by virtue of equation (7)

and we obtain;

ANER)/AVA(vV)ALW)

% % % vS(r—=v)A(V)AL(V)AP(RLT,v) £ (X)
or ANE(X)7 d)?'/ dv/avS(vev)A, (v)AL(v)AP(R%,v)
SAVA (V) AL(v)

B —(16)

£(X)

\

{
{
I
|

I
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Equation (16) is an integral equation for the unknown function
f(®) . The quantity AA enters as the eigenvalue of an
integral operator which is symmetric since
A P (X=X, v):AP, (X —X;v)
Consider the three kernels (10)., We define two kernelsAP

AP (X%, v) =B, (X=X, v)-PF—%, V)

AR, (R%,v)=P (F—>%,v) ~ Py (K> x,V) -
We see from (10), remembering that the z4, form an increasing
sequence, that AP and AF, are each kernels with all
positive eigenvalues., Furthermore, AT, 1is obtained from AP by
adding a kernel with all positive eigenvalues. If AA corres-
ponds to AP and AXN,to AR, , we see that AA and AA, are
the highest eigenvalues of symmetric kernels which are sums of
kernels with positive eigenvalues (remembering that KL (v? and

A; (V) can be chosen pnsitive definite). Furthermore AXAy 1is
the highest eigenvalue of a kernel which is obtained from that
for AN by the addition of kernels with all positive eigenvalues.
It therefore follows, from a lemma to be proved, that A}\ and
A Ay are positive and that AN, is greater than AA , so
that AL>AD>A as we wished to show.

We now prove the required lemma. Let L and M be two

symretric kernels, each with all pnsitive eigenvalves forming a
decreasing sequence from a highest eigenvalue. Let the highest

eigenvalues ofLand M be A and a respectively. We have:

- ——

—
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As (& Ly) _ M x)
N 0GR (18)

where % and X are functions so chosen that the expression

equated to A and M attain their maximum possible values,
The bracket notation of course indicates an inner product.
Consider the kernel S=L +M . Its eigenvalues are all positive

since any eigenvalue is a possible value of:

(P 5¢)___ (s LP) + (P, Mp) (19)
¢, [ C¢9 ¢) ¢’ ¢

and each term in (19) is essentially positive as can be seen by

expanding y‘ in eigenfunctions of L or M for the two
terms respectively. The highest eigenvalue of 5, o~ - will be
the absnlute maximum of the expression (19)., If we let ¢=¢" ,

for example, we obtain:

. (@ Myr).
TENT 4 ) (20)

We have just argued that:

(W’ M w) =0
Ca4
so that: (21)
o = (22)




APPROVED FOR PUBLI C RELEASE

e O -~~~ .

or by reversing the argument:

>
o= p (23)

We have therefore proved the required result, that the
highest eigenvalue of the sum of two kernels with positive eigen-
values (each with a highest eigenvalue) is greater than the
highest eigenvalue of either kernel separately. Actuall&, of
course, the proofs lack rigor because they are based on perturba-
tion arguments to first order, without a demonstration that the

higher order terms are small.,

APPENDIX III., Results of first approximations for
* several special problems

We now propose to apply the proceedures of Appendix II to
an actual many velocity problem. We first assume the validity
of diffusion theory for the calculation of all eigenvalues.
In spite of the shortcomings of diffusion theory, we can still
expect a meaningful check, since our appronximate methods will be
applied to a many velocity diffusion equation, which we shall also
solve exactly.

We define a problem as follows:

o~ (V) = o~*(V) =—\’, x(V)=1 if 0<v<t
= k(v = K& .

o; (v)=oz¥(v) = 35 =0 ificwv )

(1
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We then write the diffusion equation:

S o0
“ 3o V-NFV) -l-o-(v)N(‘,V)—-I/X(V/f (V)INE,v)dv’

{
T 3~*v) VAN, v)+to*VIN(X,v)=0 o<v<a

A<V (@

Here }(CZ;\()is the flux density at X per unit range of velocity
and Zr 1is the total number of neutrons per fission reouired for

criticality. We write:
00
F(‘x")%og(v)N(‘x’,V) av 0<v<a
(]

=0 - asv (3)

for the density of fissions, and insert the given cross sections:

VAN (%, v) - N2 N(Z v) = -3 22 F (=) "

This equation can be formally solved for NN in terms of F by the
use of the Green's function for the differential operator on

the left:

-K

3”X(V) e Vv ‘?—?' >

N(R,v)==—""=/dR" ——= F (X
(Zyv) 47w v X [x~— | (

(5)

We then multiply through by of"(v) and integrate over v to

obtain a space integral equation for F(i’)

- - 3 imem
- . Ry sasgend
e e ——

e ——
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_z FR) e XXX 6)
or F(X) % ’—- -.y' KIY—'T"

We rewrite this:

-z -K[x—x “\
F& -E%r T dil F(x) (7)

We then see that our many-velocity diffusion thenry is equivalent

to a one-velocity integral theory problem. The density of
fissions becomes a neutron density, £ becomes the 1+f needed
for criticality, and K  becomes the total cross section in

the equivalent one-velocity problem., The integral is to be taken

only over the core, so that the one-velocity problem 1is that of

an untamped sphere of radius a

. The usual extrapolated end-
point method then gives £ =1.9878,

We take K=1 and as={

We now propose to obtain Z by the U-{ and L-{ approxima-
tions. We first use the L-1 method and then obtain the approximate
answer in the U-{ approximation by the use of the perturbation

scheme developed in this appendix,

Equation (1.8) of Chapter II gives for & calculated by
the L-1 method:

o 1
1 /x(v) dv /3
2 /2 VW)
4 / (8)

APPROVED FOR PUBLI C RELEASE
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Here 2Z/(v)is the value of 2 required to make a one-velocity

system critical with the constants of velocity v . Writing k(v)
for the wave-number of the fundamental mode at veloeity v ,

_k
we must match the logarithmic derivatives of sin k and e VF

at r=a . This gives:

k cot ka = =

(9)
or ta‘:\k -V

We find 2/(Vv) Dby remembering that in the one-velocity

diffusion theory: 2

op
(22-1) —5{- =f= 352 orzx--H;o:—; f

k! &
={+—5 v¥= {+k2V*®
30-0; K (10)

={+

Combining (8) and (10), and taking k from equation (9), we have:

{ 'dv

¥ 4 | + vBk2 (V) (11)

0

This integral can be performed analytically and yields
zﬁ§T§790, which is slightly below the exact answer previously
obtained., This 1s of couvrse in the direction expected from the
theorem proved in the first part of this appendix., It is easily
estimrated that this discrepancy in the values of 2 amounts
to a difference of 0,6% in the criticat radius or 1.8% in the mass.
The difference between the true value of ¢ and 24 arises
from the fact that the one-velocity eigenfunctions do not have

the same shape.
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The spread in shapes can be indicated by giving the values of ka
for v=0 and v=1 , For v=0 , ka=sr and for v=1{ |,
ka =0.657

We now wish to apply the methods developed in the first part
of this appendix to find an upper limit for 2 o We have

S(vrv) =z x(v)

© (12)
}
and /\.LAL (V) =;?‘-;)-/a‘v'1/x (V)AL (V’)
(]
X(V,
that _-___’1__(_2
so that A; (V) ”(V)
We give 2 1its correct value and then have "}Z\" =z « The
L

equation adjoint to (12) is:

o
- , & x(V') = /
NiAL(V) %fv —;;7;%l A () (13)
0
so that A, (v) = a constant =1 , say,

We have ry =5 Z X—-‘%—X , where from equation (9)
of this appendix, AA is given (approximately ) by:

xv)

_ /av/dv’ ”TVT ux(v)N(v, v)

/dv
1 " N(v, V)
=—zzi; /dv [dVv’ YA (14)
I/ o/ 2 (V) (V')

~-‘~.—_‘~_""'~-'~——
EEERGUED FOR PUBEYS: RELEASE
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where N(anﬂ) is defined by equation (3). The indicated
double integral can be done numerically and we obtain AN=0.0161
and hence Zy = 2.0113 . This is too high as expected.
APPENDIX IV, DNumerical %“est of the convergence of
higher approximations

We propose to solve a two-velocity problem with no inelastic
scattering in the tamper, in the diffusion limit. For simplicity
we consider the same problem discussed in Appendix I, We specify

the cross-section and fission spectrum a little more clesely:

o} =4 o -8

Oilz -1 O2%c -0

Tic =0 o2t -2 a - 0.48690
O 1r -0 X2 =0

X1 -1 O%« -8

Oy * -4 O2c* = 0,11626

O 1c* =0

The radius of the tamper is infinite. .

A pair of coupled diffusion equations for the neutron densities
can be written and solved in a straightforward but lengthy fashion.
When this is done, it is found that if 2/ were equal to 2.509 the
system would be critical.

We shall now apply to this problem the first four of the
sequency of successive appréximations described at the end of

Chapter II. The fundamental integral equations are:

A (F) =2y/a% P, (F—T) A5 ()
CORE

‘\a(sr)j;//;;rfﬁa F—=%)A, ()

CORE

Al RELEASE

(L)




APPROVED FOR PUBLI C RELEASE
These are just the equation (15) of Chapter II modified to take
into account the existence of only two velocit \‘.\es and particultarized
to the cross sections of the present problem. The space functions
A, and A, are, respectively, the densities of inelastic collisions
and of fissions. The kernels F, and E are just the one-

velocity diffusion kernels for neutrons of velocities one and two

which were defined in Chapter II., Let us define Wos Uy U, ’

----- to be the successive eigenfunctions of the kernel P, and
{ {

yrR) - s- - ~to be its corresponding eigenvalues. The

function u, is then the distribution of fissions in the fundamental
mode of a one-velocity problem whose constants are the constants

of velocity, one with the total core absorption cross section
considered as fission. The quantity o is the value of ¥
required to keep this one-velocity problem critical, We define

a8 similar sequence of functions V,, v}, v, ----and a sequence

of eigenvalues ;’,; ,”i" ,;’;a gy ===-= for velocity two.

The L-{ approximation proceeds by writing:

oy —n ’ —t
H(x —-x)=7:q/x—x )

(2)
BR(X—~%)=2 /(X- %)
as outlined in Chapter II., The equations (1) become:
Z
Ay = A,
{
Az =2 Ay (3)

which ylelds &= p, 2, = 2.500, which is certainly excellent

accuracy.
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Illliil |
|
The U-{ approximation assumes: |

i uo(-’-(.-)uo(;r)

(uo ®o)

pR—3)= ,',-—o (é?,:%(; )

(4)

where (uou) {s the volume integral over the core of u, (x) .

A similar notation will now prove very useful, %Fhe equations (1)

become:

z gu.Ag_)
A () © (5)

& ”0 (Vo %) 0
These can be conveniently solved by multiplying the first by v,

and integrating and the second by u, 'and integrating. This

yields:

ﬂ gu, ng A
Cohi) oo uru) Uohe) 6)
(oAs)= o SE¥el (o))

2 (Vo V. o)
wvhich are simply two homogeneous linear equations for the numbers

(vo A,) and (w,A,) . We immediately obtain:

Lo Ko)(Vp Vi (7)
2 = pn 2y ( (u:—vj‘z‘,) = 2.516

which is ahbove the correct answer and slightly closer to it than

was L-1{ .

APERC Sminie PUBEFC -REL EASE
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In the L-2 approximation, we write: o
1 1) w &) ue (X)) i >
o)== |——— + -
Rix Y) o /¥ 1) (u-o Ko) /w'/ : Y)

(8)
Q ( x ) Vo <X) —-.-/
pz(X"'—’X) (” ”1 (Vo .V,o) (3\'. )
The integral equations become:
( (i, Ae.) !._ A
/~0 /w’ @Lo uo) &
(9)
’ (Vo Ai) __1___
Ag= p ”‘ ) (Vo Vo) Vo +”1 Al

We multiply each equation by u, and by v, and integrate over

the core, This yields four homogeneous linear equations for @OA;)
(% Ai) ’ (qua) y and (vo Aa)‘ Setting the secular determinant
equal to zero yields 2/ = 2,508, in good agreement with the correct
value, but slightly lower as expected.

Nothing will be gained by going through the U-& approximation
in detail, but it is interesting to note that it gives 27 = 2,509
to that many figures. These figures are summarized in the first
column of the table below,

An exactly similar set of calculations has been Jone for the
second problem discussed in Appendix I, namely the one with
different radius and tamper capture cross section, Inthis one
the fundamental modes have phases at the outside of the core of

—;-E and 3% s So that the set »f approximations should

4
converge less rapidly than in the previous case, The results

are given in the second column of the table. !
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z,First Problem Z, Second Problem

Exact 2.509 2,548
L-1 2.500 2.500
v-1 2.516 2.596
L-a 2,508 2.543
U-e 2.509 2.552

It is finally of considerable interest to compare the neutron
flux densities as calculated from the exact two-group diffusion
theory and the L.-{ approximation. In the first graph following
are plotted two solid curves representing N; and N, , the
neutron flux densities at velocities one and two respectively,
calculated exactly. The dotted curves are just the fundamental
modes for'the two velocities, with their relative sizes adjusted
so that the ratio of fissions to inelastic collisions is just
that given by the [-{ approximation., The first graph is for
the first case discussed in this appendix and the second graph
is for the second case with Kka ='%F' and E%F' for the two
velocities. The agreement between solid and dotted curves is

remarkable in view of the seeming crudity of the approximation.,
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APPENDIX V

TWO-VELQCITY DIFFUSION THEQRY WITH INELASTIC SCATTERING IR
THE TAMPER

We shall attempt to investigate the validity of the approxima-
tion scheme developed in Chapter III for the case of an inelastically
scattering tamper. Our procedure will parallel that of Appendix
IV in that we will discuss a two-velocity diffusion theory
problem, first exactly and then by means of the equations (4.1)
of Chapter III and the indicated successive approximations to

their solution.

We take for the constants of the problem the following:

or =op=4 o7 =oz7=8
071 = O =o"=0 Ox= &
Op12=0.2813 0z, =03 =0
o732 =0.2205

Xy =1 X, =0 a=0.7>5

The exact two-velocity diffusion equatinns plus the usual diffusion
theory boundary conditions yield 2, =2,467.

We shall now apply to this problem the successive approxima-
tions (developed in Section 5 of Chapter III) to the solution
of the integral equatinns (4.1) of Chapter III. These equations,

specialized to the present problem, are:

A((X) =z [at P (=) A, ()

CORE
A (R)=/aT'R, (X %) A(F7) 2/ /dXFp (X' —F) A, () (D)

CorE
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with Fia given in terms of P and P, by (4.11) of Chapter III.
As in Appendix III we call the sequence of one-velocity 25 for
velocity one ,u/o,/u,1 4=~ and the corresponding eigenfunctions

Ugy &y 4-=-., For velocity two we have 2z, L R and vy, V,

We then make the L-1{ approximation of Chapter II:
-ty — —wy
P, (X%X /u, (X -X)

B @FR)= 2/ (X-%) )

- P12 7. P2
Fie (r—r) = 'e( /*o 4/ radr - (! /”°> (11)

where (1 1) is an abbreviatinn for the volume integral over the
core of the product of the quantities inside the bracket.

The equations (1) become:
A(F) = g A (%)
- ! § P
Ae )=z 4y )2 (1~ 57 ) iy (142)

These can be integrated over the core to obtain two algebraic

equations for (1A1) and (1Aa) 3

(3)

q Ai) =;; (1Aa)
(4)
(18)=2 2z (1A) +2 (1- /,,o Pie (1A2)
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Inserting the values for (¢, 2, , and p;,, we obtain & = 2,500.
This is too high by 2% of z-e {, which amounts to about 4% in the
critical mass,

We now make the U-{ approximation:

ROE—= ) = 2, EalX el

- i wvo vo(X) VtLC-f')
B, (7% z (o %)

(5)

Pi2
-1 (1

Fu (=)= [ {48 w0 R [1- 55 e w )

The equations (1) become:

At(—{)z/f’o (::3(3 (uoAyz)

(6)

w15 2B mrp Bt finrsebied i o]

These are of somewhat more complicated form than (3) but they
can be reduced to three algebraic equations by multiplying the
first equation by v, , the second by wu, and by unity and
integrating over the core. This yields the equations;

1 (neve) ) (v leov, w
i 8 o A
("‘J’z"%‘c(frf’%(“') 2 >[‘“’ o Lo

“\

i“ \:
APW_EAM_ '
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These can be solved, with the information needed for L-{ plus

a knowledge of u, and v, . We obtain » = 2,441, This is
too low by less than 2% in z-1 .

By an exactly similar procedure the L-2 approximation
can be made, yielding 2z = 2,4705 which is very close.

Possibly a better test would be in a case with more inelastic
scattering in the tamper. We increase the inelastic cross section
in the tamper drastically and alter several core cross sections

to the following:

% ¥
o7 =or =4 op =0z =8
X
O =C~0p=0 o=t X, =1 a=0.5
o712 =0.05834 02 =05,=0  x,=0.

o7z = 1.8505

The exact value of 2  is 2,339, The L-{ value is 2,391,
too high by 4% in -1 or about 8% in the mass. The U-{ and L-2
approximations give, respectively, & = 2.319 and 2 = 2,341,
These are 1,5% low and a doubtful 0,18 in 2z —{ , respectively,
so that in spite of the relatively poorer accuracy of L-{ , good
convergence is still obtained,

It should be noted that the so-called upper and lower approxima-
tions have apparently reversed their roles. It cannot be proved
that this will always be so, or that they will always bracket
the answer, but it is certain that as the inelastic scattering in

the tamper approaches zero, they will become true upper and lower

—— e e — L,

eI B C R Faat
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approximations to & and a . As have been pointed out in the
text in Chapter III this series of approximations can only be
expected to converge to the true answer in the diffusion theory
1imit, In integral theory there is already an error in the
fundamental equation (4.1) for F,, of Chapter III,
APPENDIX VI.
THREE-VELOCITY PROBLEM IN INTEGRAL THEORY,

We consider a three-group problem with inelastic scattering

in an infinite tamper. We choose a core radius of two-length units

and cross sections as follows:

o;-=o;*=1 03=og*= .2 og=o;*= 1.5
o%=0 oz =0.2 O3= 0.5
Or2=07s =01 On3=Orag =0.12

OT15=43=0. 1 Gp. =0.2

o7 = 0.2 ‘%E:%=O

o;c*=0

xy = 1.0 X, =0 x3=0

We need numerous auxiliary quantities. First there are the

total absorption cross sections in the core and tamper:

on=0.4 o3, =0.5¢@ 05,= 0.5
oi=0.2 o =0.12 65 =0

We then find the absorption numbers, 9 s in the tamper:

3’7‘0.3 sa::o-’ 33'-'-'0
We will need the rates of decay, h , of the asymptotic tamper

solutions given by:

AF FOR PUBLHC=REL EASSm———
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(1)
We find:

h=0.7103 h,=0.6301 hy =0
We shall also require the quantities 92 9&1 s etc. defined in
Chapter III. These are given by relatinns of the form:

" :
o-";'* t-g (2)
=T R = 12

tanh #a*

These yield:

Je = -1303 gay =.1504

813 = .0798 93( =0

93 = . 0619 953=O

We must now find the quantities f, £, ,1f,,f; etc;,

which are needed for the calculation of the critical =z by the
methnd of Chapter IV. These quantities £ are the number of
extra neutrons per collision required to keep various one-velocity
systems critical. The relation of these auxiliary problems to
the actual problem has been defined in Chapter I1I. We give in

tabular form the constants specifying these problems:

APPROVED FOR PUBLI C RELEASE
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Problem 67’a o~*2 ﬁ;jl j;ar
1 2.0 2,0 0.2 0,7103
2 2.4 2.4 C.1 0.5251
3 3.0 3.0 0 0

12 2.4 2.4 0.1303 0.5919
13 3.0 3.0 0.0798 0.4735
23 3.0 3.0 0.0619 0,4201
21 2.0 2.0 0,1504 0.6301
31 2,0 2.0 0 0
32 2.4 2.4 0 0

As stated in Chapter I, there exist rapid and accurate methods

for obtaining the f%5 in general. For the purpose at hand, the
mean free paths in core and tamper were purposely set egual for
each velocity, so that the more precise method of the extrapolated
end point described by Frankel and Nelson in LA-53 could be
applied. According to this methnd, we first choose the unit of
length so that the total cross section is unify and introduce an
auxiliary variable kK , which is just the wave number of the
sinusoidal asymptotic solution in the core. We then have the two

relations:

fr—-tan"“jri‘_

K:
(3)
K
4+ £ =
1 +£ tan-t &

The first of these is i%%ﬁ?{?{‘ theory biugiiri iidition
- T e _Pi .

e ——
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applied at a distance x , inside the actual boundary. The

second is just the usual relation between f and K . We

can find x, as a function of f and 9’ from a graph in
LA-258 (By Frankel and Goldberg). The procedure is then to guess
a value of k s calculate f by the second equation, look

up X, , and calculate an improved value of K by substituting
the quantities thus far found in the right-hand side of the

first equation. This procedure yields the following values of f :

£,=0.3226 f,=0.2244 f,= 0.0862
f,,=0.2332 £,4=0.3100

f,3=0.1555 £3,=0.1834

£,5=0. 1495 f32=0.1311

It will finally be convenient to calculate values of 2 ,
the total number of neutrons necessary per core absorption
to keep these auxiliary systems critical. This can be done
with the usual relation:

o
={+—=f (4)
73

We obtain:

z;=1.8065 z =1.5178 z,5=1.2586
z;,=1.5382 2,,=1.7750
z4,,=1.4665 2751=1.4585

2;,5=14485 24,=1.3025
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We shall now need the quantities p,, P13+ Pes »Pre3 ° We
will make several calculations nf the value of & required to
make our three velocity problem eritical. For the first we use
the equations (3.5) and (5.8) of Chapter III for Pie and pyag .
By simply substituting the numbers already found in these equatinns,

we obtain:

P'a=0.1074 P13=0.3541 P23=O‘3364
P123=0.24 19
By vsing the equations (3.15) and (5.7) of Chapter III we
can get an alternative set of wvalues for the above quantities,
The vanishing of the tamper absorption in the third group now
requires the taking of limits in which c?‘* approaches zero and

3a
the diffusion theory relation (exact for small absorption) between

g and h 1is used to nbtain limiting values for 9314 and
Eh
gé% « These limits are: a
33
05a 01‘
X
o;
—= =%z =1.0417
=

The following values are then easily obtained:
P12 =0.1129 Pi3=0.3626 Pe3=0.3394

Pi23=0.3243
The first three quantities are seen to be in reasonable agreement.
with their previous values, but the two values of Pi23 do not

agree well,

APPW PUBLI C RELEASE
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(Some of this discrepancy may arise from the fact that P23 does
not have so many significant figures as Pfa » bescause of the
subtractions occurring in 1t.)

We now use the first set of values and the method embodied
in equations (5.1), (5.2), and (5.3) of Chapter IV to find the
value of 2 for criticallity. Equation (5.1), w th the specified
normalization to one neutron emlitted from fission per second,

becomes:?

X4 Xy
= = 1.38388
ontfor Zon, 3858

N, =

Equation (5.2) becomes:

*
Na": {X2+0‘1a N1+£ 0" P'a }=0.80578

{
%o

Similarly, equstion (6.3) becomes?
N =05002
We can now calculate 2 from equation (5.4) of Chapter IV. we obtain
2z =3 4336

By performing exactly the same calculation with the other set
of values for Pia P13’P¢3’P"3 we obtain?

Z= 32463

This discrepancy in the value of 27 wlll give rise to s
~diacrepancy in the critical mass if 2 1is specified. This
corresponding discrepancy in mass can be estimated to be about 16%,

which is large, but not uselessly so. It 1s interesting to compare

this dlscrepancy with mg&%ﬂl@%%éhe tamps r inelastic
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cross sections to capture cross sections. This produces such a

large change in 27 (to 6.1828) that it is difficult to be sure
of the mass change, but it probably amounts to approximately a
3004 increase. The 164 uncertainty in the mass arising from our
approximate method is then seen to be negligible in comparison with
the possible uncertainty introduced by the presence of 1inelastic
scattering.

It would of course be more reasonable to treat the tamper
inelastic cross section as an elastic rross section rather than
g capture, i1f 1t is desired to ignore the effect of the inelastic
scattering. This at least does not throw away neutrons which are
actually present. This calculation 1s easily done and leads to
s valuve 2 = 4.7407, which corresponds to a criticel mass too
large by about 150%. We then see that the 16% discrepancy in
mass between our first two calculations 1s really negligible in
comparison with the total effect on the mass of the inelastic
scattering in the tamper. We can estimate that our approximate

methods will give the effect of the tamper inelastic scattering

on the critical mass to about 10%, which is excellent. The

exsmple was chosen to show up the effect of inelastic scattering
to an extreme degree. Under more practical conditions the effects
of inelastic scattering are not nearly so drastic.

It should be pointed out that in actual practice, the
differential cross sections will not be known with complete sccuracy.
If they were, the reduction to average three group cross sections
is too ambiguous a procedure to be considered reliable. The best
avallable procedure 1s then to adjust the three group cross

sections so that they are in reasonable agreement with the known
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differential cross sections, and at the same time so that their
use in the approximate formallism here developed will give correct \
results for the available experiments on assemblies which are in |
the neighborhood of critical. The formalism can then be considered
a vallid and convenient method for predicting the results of other
experiments which are not too remotely related the the experiments
which were used in the adjustment of the cross sectlons.

It 1s instructive at this point to check the accuracy of
the expression obtained for Pfa by the use of the asymptotic
exponential approximation to the tamper densities in the one

velocity problems. We use equation (2.4) of Chapter III to obtain:
Pz =0.1077 p3=0.3618 p23=0.3438

We then insert these values in equation (5.8) of Chapter III to
obtain:

Pia3 = 0.2474

It is seen that these values agree well with the ones previously
obtained, so that the value of - 2 for criticality will be given
well with this simpler procedure.

Ne see that, at least for the example used, this much simpler
method 1s just as trustworthy as the methods previously used.
It will presumably become relatively poorer as‘the tampe r absorptions
are increased, but 1t should always be used unless greater accuracy
1s‘clear1y necessary.

Finally, it should be noticed that with the present formalism,
the use of more than three groups is of doubtful advantage,
inasmuch as the discrepany between the three values of P23

indicates that a quantity such as Pm% may be completely mwncertain.
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APPENDIX VII.

NUMERICAL TEST OF THE THEORY FOR A FINITE TAMPER,

We assume a two-velocity svstem with the following constants:

X X
op=or=1 0;=03 .07:=0 o3=0 o5, =02 o =0
% X
=% =1 05=03 Fze =0 o, =0

We inquire what value of 22 for fission will make the system critical.
The constants have been so chosen that a neutron at either velocity
is equally effective in causing a fission, so that the problem

really is a one-velocity problem with constants:
= X X
o~=o~ = | ofF =03 oz =0 ;=0

a=|.4 b=3.0

The f for this problem can be found by the extrapolated end-
point method and is equal to 0.4505. We can immediately find the &
for eriticality to be 2.5017.

We now apply the method of Chapter IV for snlving two-velocity
problems with finite tampers. For this purpose we require that
for a one-velocity problem with the constants of group one., This
problem is identical with the previous one, except for the fact
that3,= 0.2, This can also be solved exactly and yields

f' = 0,5255, which is equivalent to 2, = 2.7517.
”
R
, A
o B o
E i
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The other f reouired is f, , which is just the one first
given., The quantity Lt defined in equation (64) of Chapter III
1s equal to 1.2486. The quantity py, _defined by equation (6.9)
of Chapter IIT can be found by taking the limit of 3’1‘&; for
small ha and is equal to 0,11l2,

Equations (5.1) and (5.2) of Chapter IV with p, replaced
by _(—17&5‘,_)* and N3 =0 can then be solved for Ny and

N, and the value of 2z found by the usual procedure. We

obtain 22 = 2,5324, We have therefore made a mistake in 2w { of
about 2% by the use of our methnd. This corresponds to a mistake
in critical mass of something like 4%, which is certainly
tolerable for most purposes,

We might ask for the total effect on 2 of the finiteness
of the tamper. The value o»f 2 for the same system with b=oo
is 2.1230., This corresponds to something like a 60% mass decrease
from the previous case, so that our approximate treatment gives
the effect on the mass of the finiteness of the tamper to some-
thing like 7%. This certainly constitutes a very useful degree of

accuracy.
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